On varieties of graphs
Alfonz Haviar ; Roman Nedela
Discussiones Mathematicae Graph Theory, Tome 18 (1998), p. 209-223 / Harvested from The Polish Digital Mathematics Library

In this paper, we introduce the notion of a variety of graphs closed under isomorphic images, subgraph identifications and induced subgraphs (induced connected subgraphs) firstly and next closed under isomorphic images, subgraph identifications, circuits and cliques. The structure of the corresponding lattices is investigated.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270513
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1077,
     author = {Alfonz Haviar and Roman Nedela},
     title = {On varieties of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {18},
     year = {1998},
     pages = {209-223},
     zbl = {0926.05033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1077}
}
Alfonz Haviar; Roman Nedela. On varieties of graphs. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 209-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1077/

[000] [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discusiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[001] [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[002] [3] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, Heidelberg, Berlin, 1981). | Zbl 0478.08001

[003] [4] G. Chartrand and L. Lesniak, Graphs & Digraphs, (third ed.) (Chapman & Hall, London, 1996). | Zbl 0890.05001

[004] [5] D. Duffus and I. Rival, A Structure Theory for Ordered Sets, Discrete Math. 35 (1981) 53-118, doi: 10.1016/0012-365X(81)90201-6.

[005] [6] R.P. Jones, Hereditary properties and P-chromatic numbers, in: Combinatorics, Proc. British Combin. Conf., Aberystwyth 1973, T.P. McDonough and V.C. Mavron, eds. (Cambridge Univ. Press, Cambridge, 1974) 83-88.

[006] [7] S. Klavžar and M. Petkovšek, Notes on hereditary classes of graphs, Preprint Ser. Dept. Math. University E.K., Ljubljana, 25 (1987) 206.

[007] [8] P. Mihók, On graphs critical with respect to generalized independence numbers, in: Colloquia Mathematica Societatis János Bolyai 52, Combinatorics 2 (1987) 417-421.

[008] [9] E.R. Scheinerman, On the structure of hereditary classes of graphs, Jour. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414. | Zbl 0609.05057

[009] [10] C. Thomassen, Embeddings and minors, in: Handbook of combinatorics, R. Graham, M. Grötsches and L. Lovász, eds. (Elesevier Science B.V., 1965).