The composition graph of a family of n+1 disjoint graphs is the graph H obtained by substituting the n vertices of H₀ respectively by the graphs H₁,H₂,...,Hₙ. If H has some hereditary property P, then necessarily all its factors enjoy the same property. For some sort of graphs it is sufficient that all factors have a certain common P to endow H with this P. For instance, it is known that the composition graph of a family of perfect graphs is also a perfect graph (B. Bollobas, 1978), and the composition graph of a family of comparability graphs is a comparability graph as well (M.C. Golumbic, 1980). In this paper we show that the composition graph of a family of co-graphs (i.e., P₄-free graphs), is also a co-graph, whereas for θ₁-perfect graphs (i.e., P₄-free and C₄-free graphs) and for threshold graphs (i.e., P₄-free, C₄-free and 2K₂-free graphs), the corresponding factors have to be equipped with some special structure.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1074, author = {Vadim E. Levit and Eugen Mandrescu}, title = {On hereditary properties of composition graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {18}, year = {1998}, pages = {183-195}, zbl = {0935.05059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1074} }
Vadim E. Levit; Eugen Mandrescu. On hereditary properties of composition graphs. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 183-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1074/
[000] [1] B. Bollobás, Extremal graph theory (Academic Press, London, 1978). | Zbl 0419.05031
[001] [2] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nešetřil, eds., The Mathematics of Paul Erdős, II, Algorithms and Combinatorics 14 (Springer-Verlag, 1997) 70-78. | Zbl 0866.05030
[002] [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli ed., Advances in Graph Theory (Vishwa Intern. Publication, Gulbarga,1991) 41-68.
[003] [4] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, A Survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[004] [5] P. Borowiecki and J. Ivančo, P-bipartitions of minor hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 89-93, doi: 10.7151/dmgt.1041. | Zbl 0914.05057
[005] [6] V. Chvátal and P.L. Hammer, Set-packing and threshold graphs, Res. Report CORR 73-21, University Waterloo, 1973.
[006] [7] S. Foldes and P.L. Hammer, Split graphs, in: F. Hoffman et al., eds., Proc. 8th Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, Louisiana, 1977) 311-315. | Zbl 0407.05071
[007] [8] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978) 105-107, doi: 10.1016/0012-365X(78)90178-4.
[008] [9] M.C. Golumbic, Algorithmic graph theory and perfect graphs (Academic Press, London, 1980).
[009] [10] J.L. Jolivet, Sur le joint d' une famille de graphes, Discrete Math. 5 (1973) 145-158, doi: 10.1016/0012-365X(73)90106-4. | Zbl 0256.05124
[010] [11] N.V.R. Mahadev and U.N. Peled, Threshold graphs and related topics (North-Holland, Amsterdam, 1995). | Zbl 0852.05001
[011] [12] E. Mandrescu, Triangulated graph products, Anal. Univ. Galatzi (1991) 37-44.
[012] [13] K.R. Parthasarathy, S.A. Choudum and G. Ravindra, Line-clique cover number of a graph, Proc. Indian Nat. Sci. Acad., Part A 41 (3) (1975) 281-293. | Zbl 0335.05127
[013] [14] U.N. Peled, Matroidal graphs, Discrete Math. 20 (1977) 263-286.
[014] [15] A. Pnueli, A. Lempel and S. Even, Transitive orientation of graphs and identification of permutation graphs, Canad. J. Math. 23 (1971) 160-175, doi: 10.4153/CJM-1971-016-5. | Zbl 0204.24604
[015] [16] G. Ravindra and K.R. Parthasarathy, Perfect Product Graphs, Discrete Math. 20 (1977) 177-186, doi: 10.1016/0012-365X(77)90056-5. | Zbl 0371.05028
[016] [17] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959) 693-698, doi: 10.1215/S0012-7094-59-02667-5. | Zbl 0095.37802