We discuss the construction of snarks (that is, cyclically 4-edge connected cubic graphs of girth at least five which are not 3-edge colourable) by using what we call colourable snark units and a welding process.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1070, author = {Busiso P. Chisala}, title = {On generating snarks}, journal = {Discussiones Mathematicae Graph Theory}, volume = {18}, year = {1998}, pages = {147-158}, zbl = {0924.05028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1070} }
Busiso P. Chisala. On generating snarks. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 147-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1070/
[000] [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976). | Zbl 1226.05083
[001] [2] B. Jackson, On cycle Covers, cycle Decompositions and Euler Tours of Graphs, Preprint (1993). | Zbl 0791.05081
[002] [3] F. Jaeger, Nowhere-zero Flow Problems, in: Graph Theory 3, edited by L.W, Beincke and R.J. Wilson (Academic Press Ltd., New York, 1988). | Zbl 0658.05034
[003] [4] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844. | Zbl 0311.05109
[004] [5] J.J. Watkins and R.J. Wilson, A Survey of snarks, in: Graph Theory, Combinatorics and Applications, Vol. 2, Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, Y. Alavi et. al. (eds) (John Wiley & Sons, 1991) 1129-1144. | Zbl 0841.05035