A path(ological) partition problem
Izak Broere ; Michael Dorfling ; Jean E. Dunbar ; Marietjie Frick
Discussiones Mathematicae Graph Theory, Tome 18 (1998), p. 113-125 / Harvested from The Polish Digital Mathematics Library

Let τ(G) denote the number of vertices in a longest path of the graph G and let k₁ and k₂ be positive integers such that τ(G) = k₁ + k₂. The question at hand is whether the vertex set V(G) can be partitioned into two subsets V₁ and V₂ such that τ(G[V₁] ) ≤ k₁ and τ(G[V₂] ) ≤ k₂. We show that several classes of graphs have this partition property.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:270308
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1068,
     author = {Izak Broere and Michael Dorfling and Jean E. Dunbar and Marietjie Frick},
     title = {A path(ological) partition problem},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {18},
     year = {1998},
     pages = {113-125},
     zbl = {0912.05048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1068}
}
Izak Broere; Michael Dorfling; Jean E. Dunbar; Marietjie Frick. A path(ological) partition problem. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 113-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1068/

[000] [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[001] [2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. | Zbl 0902.05027

[002] [3] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graph, Discussiones Mathematicae Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058. | Zbl 0906.05059

[003] [4] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808. | Zbl 0173.26204

[004] [5] G. Chartrand and L. Lesniak, Graphs and Digraphs, second edition (Wadsworth & Brooks/Cole, Monterey, 1986). | Zbl 0666.05001

[005] [6] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69. | Zbl 0047.17001

[006] [7] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász, J.A. University, Szeged, 1984.

[007] [8] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209. | Zbl 0593.05041

[008] [9] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982), 173-177 (Teubner-Texte Math., 59, 1983).

[009] [10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238. | Zbl 0151.33401

[010] [11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).

[011] [12] M. Stiebitz, Decomposing graphs under degree constraints, J. Graph Theory 23 (1996) 321-324, doi: 10.1002/(SICI)1097-0118(199611)23:3<321::AID-JGT12>3.0.CO;2-H | Zbl 0865.05058

[012] [13] J. Vronka, Vertex sets of graphs with prescribed properties (in Slovak), Thesis, supervised by P. Mihók, P.J. Šafárik University, Košice, 1986.