In this note, all chromatic equivalence classes for 2-connected 3-chromatic graphs with five triangles and cyclomatic number six are described. New families of chromatically unique graphs of order n are presented for each n ≥ 8. This is a generalization of a result stated in [5]. Moreover, a proof for the conjecture posed in [5] is given.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1067, author = {Halina Bielak}, title = {The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six}, journal = {Discussiones Mathematicae Graph Theory}, volume = {18}, year = {1998}, pages = {99-111}, zbl = {0910.05024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1067} }
Halina Bielak. The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 99-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1067/
[000] [1] C.Y. Chao and E.G. Whitehead Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9. | Zbl 0411.05035
[001] [2] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578. | Zbl 0727.05023
[002] [3] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D. | Zbl 0752.05029
[003] [4] F. Harary, Graph Theory (Reading, 1969).
[004] [5] N-Z. Li and E.G. Whitehead Jr., The chromaticity of certain graphs with five triangles, Discrete Math. 122 (1993) 365-372, doi: 10.1016/0012-365X(93)90312-H. | Zbl 0787.05040
[005] [6] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0. | Zbl 0173.26203