Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1060, author = {Mariusz Wo\'zniak}, title = {A note on uniquely embeddable graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {18}, year = {1998}, pages = {15-21}, zbl = {0915.05050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1060} }
Mariusz Woźniak. A note on uniquely embeddable graphs. Discussiones Mathematicae Graph Theory, Tome 18 (1998) pp. 15-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1060/
[000] [1] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8. | Zbl 0387.05020
[001] [2] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308. | Zbl 0375.05046
[002] [3] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996. | Zbl 0379.05023
[003] [4] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142. | Zbl 0418.05003
[004] [5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9. | Zbl 0417.05037
[005] [6] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0. | Zbl 0807.05025
[006] [7] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4. | Zbl 0685.05036