Isomorphic components of Kronecker product of bipartite graphs
Pranava K. Jha ; Sandi Klavžar ; Blaž Zmazek
Discussiones Mathematicae Graph Theory, Tome 17 (1997), p. 301-309 / Harvested from The Polish Digital Mathematics Library

Weichsel (Proc. Amer. Math. Soc. 13 (1962) 47-52) proved that the Kronecker product of two connected bipartite graphs consists of two connected components. A condition on the factor graphs is presented which ensures that such components are isomorphic. It is demonstrated that several familiar and easily constructible graphs are amenable to that condition. A partial converse is proved for the above condition and it is conjectured that the converse is true in general.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270647
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1057,
     author = {Pranava K. Jha and Sandi Klav\v zar and Bla\v z Zmazek},
     title = {Isomorphic components of Kronecker product of bipartite graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {17},
     year = {1997},
     pages = {301-309},
     zbl = {0906.05050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1057}
}
Pranava K. Jha; Sandi Klavžar; Blaž Zmazek. Isomorphic components of Kronecker product of bipartite graphs. Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 301-309. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1057/

[000] [1] L. Babai, Automorphism Groups, Isomorphism, Reconstruction, Chapter 27 in Handbook of Combinatorics (R.L. Graham. M. Grötschel, L. Lovász, eds.) Elsevier, Amsterdam, (1995) 1447-1540. | Zbl 0846.05042

[001] [2] D. Greenwell and L. Lovász, Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974) 335-340, doi: 10.1007/BF01886093. | Zbl 0294.05108

[002] [3] S. Hedetniemi, Homomorphisms of graphs and automata, University of Michigan, Technical Report 03105-44-T, (1966).

[003] [4] P. Hell, An introduction to the category of graphs, Ann. New York Acad. Sci. 328 (1979) 120-136, doi: 10.1111/j.1749-6632.1979.tb17773.x.

[004] [5] W. Imrich, Factorizing cardinal product graphs in polynomial time, Discrete Math., to appear.

[005] [6] P.K. Jha, Decompositions of the Kronecker product of a cycle and a path into long cycles and long paths, Indian J. Pure Appl. Math. 23 (1992) 585-602. | Zbl 0768.05077

[006] [7] P.K. Jha, Hamiltonian decompositions of products of cycles, Indian J. Pure Appl. Math. 23 (1992) 723-729. | Zbl 0783.05080

[007] [8] P.K. Jha, N. Agnihotri and R. Kumar, Edge exchanges in Hamiltonian decompositions of Kronecker-product graphs, Comput. Math. Applic. 31 (1996) 11-19, doi: 10.1016/0898-1221(95)00189-1. | Zbl 0849.05057

[008] [9] F. Lalonde, Le probleme d'etoiles pour graphes est NP-complet, Discrete Math. 33 (1981) 271-280, doi: 10.1016/0012-365X(81)90271-5. | Zbl 0458.68025

[009] [10] R.H. Lamprey and B.H. Barnes, Product graphs and their applications, Modelling and Simulation, 5 (1974) 1119-1123 (Proc Fifth Annual Pittsburgh Conference, Instrument Society of America, Pittsburgh, PA, 1974).

[010] [11] J. Neetil, Representations of graphs by means of products and their complexity, Lecture Notes in Comput. Sci. 118 (1981) 94-102, doi: 10.1007/3-540-10856-4₇6.

[011] [12] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598, doi: 10.1002/jgt.3190110416. | Zbl 0649.05050

[012] [13] V.G. Vizing, The Cartesian product of graphs, Vyc. Sis. 9 (1963) 30-43.

[013] [14] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52, doi: 10.1090/S0002-9939-1962-0133816-6. | Zbl 0102.38801