Let wₖ be the minimum degree sum of a path on k vertices in a graph. We prove for normal plane maps that: (1) if w₂ = 6, then w₃ may be arbitrarily big, (2) if w₂ < 6, then either w₃ ≤ 18 or there is a ≤ 15-vertex adjacent to two 3-vertices, and (3) if w₂ < 7, then w₃ ≤ 17.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1055, author = {O.V. Borodin}, title = {Minimal vertex degree sum of a 3-path in plane maps}, journal = {Discussiones Mathematicae Graph Theory}, volume = {17}, year = {1997}, pages = {279-284}, zbl = {0906.05017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1055} }
O.V. Borodin. Minimal vertex degree sum of a 3-path in plane maps. Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 279-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1055/
[000] [1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in plane graph, (in Russian), Matem. zametki 48 (6) (1989) 9-12.
[001] [2] O.V. Borodin, Triangulated 3-polytopes without faces of low weight, submitted. | Zbl 0956.52010
[002] [3] H. Enomoto and K. Ota, Properties of 3-connected graphs, preprint (April 21, 1994).
[003] [4] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum I, II (in Japanese), Annual Meeting of Mathematical Society of Japan, 1993.
[004] [5] Ph. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236, doi: 10.2307/2370527. | Zbl 48.0664.02
[005] [6] S. Jendrol', Paths with restricted degrees of their vertices in planar graphs, submitted. | Zbl 1003.05055
[006] [7] S. Jendrol', A structural property of 3-connected planar graphs, submitted.
[007] [8] A. Kotzig, Contribution to the theory of Eulerian polyhedra, (in Russian), Mat. Čas. 5 (1955) 101-103.