Minimal vertex degree sum of a 3-path in plane maps
O.V. Borodin
Discussiones Mathematicae Graph Theory, Tome 17 (1997), p. 279-284 / Harvested from The Polish Digital Mathematics Library

Let wₖ be the minimum degree sum of a path on k vertices in a graph. We prove for normal plane maps that: (1) if w₂ = 6, then w₃ may be arbitrarily big, (2) if w₂ < 6, then either w₃ ≤ 18 or there is a ≤ 15-vertex adjacent to two 3-vertices, and (3) if w₂ < 7, then w₃ ≤ 17.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270447
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1055,
     author = {O.V. Borodin},
     title = {Minimal vertex degree sum of a 3-path in plane maps},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {17},
     year = {1997},
     pages = {279-284},
     zbl = {0906.05017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1055}
}
O.V. Borodin. Minimal vertex degree sum of a 3-path in plane maps. Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 279-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1055/

[000] [1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in plane graph, (in Russian), Matem. zametki 48 (6) (1989) 9-12.

[001] [2] O.V. Borodin, Triangulated 3-polytopes without faces of low weight, submitted. | Zbl 0956.52010

[002] [3] H. Enomoto and K. Ota, Properties of 3-connected graphs, preprint (April 21, 1994).

[003] [4] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum I, II (in Japanese), Annual Meeting of Mathematical Society of Japan, 1993.

[004] [5] Ph. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236, doi: 10.2307/2370527. | Zbl 48.0664.02

[005] [6] S. Jendrol', Paths with restricted degrees of their vertices in planar graphs, submitted. | Zbl 1003.05055

[006] [7] S. Jendrol', A structural property of 3-connected planar graphs, submitted.

[007] [8] A. Kotzig, Contribution to the theory of Eulerian polyhedra, (in Russian), Mat. Čas. 5 (1955) 101-103.