Localization of jumps of the point-distinguishing chromatic index of Kn,n
Mirko Horňák ; Roman Soták
Discussiones Mathematicae Graph Theory, Tome 17 (1997), p. 243-251 / Harvested from The Polish Digital Mathematics Library

The point-distinguishing chromatic index of a graph represents the minimum number of colours in its edge colouring such that each vertex is distinguished by the set of colours of edges incident with it. Asymptotic information on jumps of the point-distinguishing chromatic index of Kn,n is found.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270250
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1051,
     author = {Mirko Hor\v n\'ak and Roman Sot\'ak},
     title = {Localization of jumps of the point-distinguishing chromatic index of $K\_{n,n}$
            },
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {17},
     year = {1997},
     pages = {243-251},
     zbl = {0906.05025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1051}
}
Mirko Horňák; Roman Soták. Localization of jumps of the point-distinguishing chromatic index of $K_{n,n}$
            . Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 243-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1051/

[000] [1] K. Al-Wahabi, R. Bari, F. Harary and D. Ullman, The edge-distinguishing chromatic number of paths and cycles, Annals of Discrete Math. 41 (1989) 17-22, doi: 10.1016/S0167-5060(08)70446-1. | Zbl 0669.05031

[001] [2] D.G. Beane, N.L. Biggs and B.J. Wilson, The growth rate of the harmonious chromatic number, J. Graph Theory 13 (1989) 291-298, doi: 10.1002/jgt.3190130304. | Zbl 0681.05032

[002] [3] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory (to appear). | Zbl 0886.05068

[003] [4] J. Cerný, M. Hor nák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31. | Zbl 0853.05040

[004] [5] O. Favaron and R.H. Schelp, Strong edge colorings of graphs, Discrete Math. (to appear).

[005] [6] O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241-252. | Zbl 0505.05033

[006] [7] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: F. Harary and J.S. Maybee, eds., Graphs and Applications (Wiley-Interscience, New York 1985) 147-162.

[007] [8] J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Discrete Meth. 4 (1983) 306-311, doi: 10.1137/0604032. | Zbl 0543.05028

[008] [9] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.

[009] [10] M. Horňák and R. Soták, The fifth jump of the point-distinguishing chromatic index of Kn,n, Ars Combin. 42 (1996) 233-242. | Zbl 0852.05045

[010] [11] M. Horňák and R. Soták, Asymptotic behaviour of the observability of Qₙ, Discrete Math. (to appear). | Zbl 0890.05028

[011] [12] Sin-Min Lee and J. Mitchem, An upper bound for the harmonious chromatic number of a graph, J. Graph Theory 12 (1987) 565-567.

[012] [13] Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Congr. Numer. 63 (1988) 213-228. | Zbl 0756.05056

[013] [14] N. Zagaglia Salvi, On the the point-distinguishing chromatic index of Kn,n, Ars Combin. 25 (B) (1988) 93-104.

[014] [15] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of Kn,n, Ars Combin. 29 (B) (1990) 235-244. | Zbl 0724.05028