Vizing [15] and Erdős et al. [8] independently introduce the idea of considering list-colouring and k-choosability. In the both papers the choosability version of Brooks' theorem [4] was proved but the choosability version of Gallai's theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (𝓟,k)-choosability have been proved. In this paper we prove some extensions of the well-known bounds for the 𝓟-chromatic number to the (𝓟,k)-choice number and then an extension of Brooks' theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1045, author = {Mieczys\l aw Borowiecki and Izak Broere and Peter Mih\'ok}, title = {On generalized list colourings of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {17}, year = {1997}, pages = {127-132}, zbl = {0903.05022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1045} }
Mieczysław Borowiecki; Izak Broere; Peter Mihók. On generalized list colourings of graphs. Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 127-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1045/
[000] [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[001] [2] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
[002] [3] M. Borowiecki, E. Drgas-Burchardt, Generalized list colourings of graphs, Discussiones Math. Graph Theory 15 (1995) 185-193, doi: 10.7151/dmgt.1016. | Zbl 0845.05046
[003] [4] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. | Zbl 0027.26403
[004] [5] G. Chartrand and H.H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612. | Zbl 0175.50505
[005] [6] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, (Wadsworth & Brooks/Cole, Monterey, 1986). | Zbl 0666.05001
[006] [7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92, doi: 10.1112/jlms/s1-27.1.85. | Zbl 0046.41001
[007] [8] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.
[008] [9] T. Gallai, Kritiche Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395. | Zbl 0144.23204
[009] [10] T.R. Jensen and B. Toft, Graph Colouring Problems, (Wiley-Interscience Publications, New York, 1995).
[010] [11] A.V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996) 299-303, doi: 10.1016/0012-365X(95)00294-7. | Zbl 0871.05024
[011] [12] P. Mihók, An extension of Brooks' theorem, in: Proc. Fourth Czechoslovak Symp. on Combin., Combinatorics, Graphs, Complexity (Prague, 1991) 235-236. | Zbl 0766.05028
[012] [13] S.K. Stein, B-sets and planar graphs, Pacific J. Math. 37 (1971) 217-224. | Zbl 0194.56101
[013] [14] C. Thomassen, Color-critical graphs on a fixed surface (Report, Technical University of Denmark, Lyngby, 1995).
[014] [15] V.G. Vizing, Colouring the vertices of a graph in prescribed colours, Diskret. Analiz 29 (1976) 3-10 (in Russian).