Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by has property . If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1044, author = {Izak Broere and Marietjie Frick and Peter Mih\'ok}, title = {The order of uniquely partitionable graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {17}, year = {1997}, pages = {115-125}, zbl = {0906.05058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1044} }
Izak Broere; Marietjie Frick; Peter Mihók. The order of uniquely partitionable graphs. Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 115-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1044/
[000] [1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely -colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C. | Zbl 0870.05026
[001] [2] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa Internat. Publ., 1991) 41-68.
[002] [3] I. Broere and M. Frick, On the order of uniquely (k,m)-colourable graphs, Discrete Math. 82 (1990) 225-232, doi: 10.1016/0012-365X(90)90200-2. | Zbl 0712.05024
[003] [4] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. | Zbl 0902.05027
[004] [5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986). | Zbl 0666.05001
[005] [6] M. Frick, On replete graphs, J. Graph Theory 16 (1992) 165-175, doi: 10.1002/jgt.3190160208. | Zbl 0763.05044
[006] [7] M. Frick and M.A. Henning, Extremal results on defective colourings of graphs, Discrete Math. 126 (1994) 151-158, doi: 10.1016/0012-365X(94)90260-7. | Zbl 0794.05029
[007] [8] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043
[008] [9] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002. | Zbl 0829.05057