Maximal graphs with respect to hereditary properties
Izak Broere ; Marietjie Frick ; Gabriel Semanišin
Discussiones Mathematicae Graph Theory, Tome 17 (1997), p. 51-66 / Harvested from The Polish Digital Mathematics Library

A property of graphs is a non-empty set of graphs. A property P is called hereditary if every subgraph of any graph with property P also has property P. Let P₁, ...,Pₙ be properties of graphs. We say that a graph G has property P₁∘...∘Pₙ if the vertex set of G can be partitioned into n sets V₁, ...,Vₙ such that the subgraph of G induced by Vi has property Pi; i = 1,..., n. A hereditary property R is said to be reducible if there exist two hereditary properties P₁ and P₂ such that R = P₁∘P₂. If P is a hereditary property, then a graph G is called P- maximal if G has property P but G+e does not have property P for every e ∈ E([G̅]). We present some general results on maximal graphs and also investigate P-maximal graphs for various specific choices of P, including reducible hereditary properties.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270401
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1038,
     author = {Izak Broere and Marietjie Frick and Gabriel Semani\v sin},
     title = {Maximal graphs with respect to hereditary properties},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {17},
     year = {1997},
     pages = {51-66},
     zbl = {0902.05027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1038}
}
Izak Broere; Marietjie Frick; Gabriel Semanišin. Maximal graphs with respect to hereditary properties. Discussiones Mathematicae Graph Theory, Tome 17 (1997) pp. 51-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1038/

[000] [1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely (m,k)τ-colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C. | Zbl 0870.05026

[001] [2] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, submitted. | Zbl 0945.05022

[002] [3] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124; MR96e:05078. | Zbl 0813.05061

[003] [4] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[004] [5] I. Broere, M. Frick and P. Mihók, On the order of uniquely partitionable graphs, submitted. | Zbl 0906.05058

[005] [6] G. Chartrand and L. Lesniak, Graphs and Digraphs, (Wadsworth & Brooks/Cole, Monterey California, 1986). | Zbl 0666.05001

[006] [7] P. Erdős and T. Gallai, On the minimal number of vertices representing the edges of a graph, Magyar Tud. Akad. Math. Kutató Int. Közl. 6 (1961) 181-203; MR 26#1878. | Zbl 0101.41001

[007] [8] Z. Filáková, P. Mihók and G. Semanišin, On maximal k-degenerate graphs, to appear in Math. Slovaca.

[008] [9] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17 (1965) 720-724; MR31#3354. | Zbl 0129.39901

[009] [10] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209. | Zbl 0593.05041

[010] [11] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040. | Zbl 0905.05038

[011] [12] R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096; MR42#1715. | Zbl 0202.23502

[012] [13] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043

[013] [14] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18; MR96c:05149, doi: 10.7151/dmgt.1002. | Zbl 0829.05057

[014] [15] J. Mitchem, An extension of Brooks' theorem to r-degenerate graphs, Discrete Math. 17 (1977) 291-298; MR 55#12561. | Zbl 0351.05124

[015] [16] J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11 (1977) 101-106. | Zbl 0348.05109

[016] [17] G. Semanišin, On some variations of extremal graph problems, Discussiones Mathematicae Graph Theory 17 (1997) 67-76, doi: 10.7151/dmgt.1039. | Zbl 0904.05046

[017] [18] J.M.S. Simoes-Pereira, On graphs uniquely partitionable into n-degenerate subgraphs, in: Infinite and finite sets - Colloquia Math. Soc. J. Bólyai 10 (North-Holland Amsterdam, 1975) 1351-1364; MR53#2758.

[018] [19] J.M.S. Simoes-Pereira, A survey on k-degenerate graphs, Graph Theory Newsletter 5 (6) (75/76) 1-7; MR 55#199. | Zbl 0331.05135