On light subgraphs in plane graphs of minimum degree five
Stanislav Jendrol' ; Tomáš Madaras
Discussiones Mathematicae Graph Theory, Tome 16 (1996), p. 207-217 / Harvested from The Polish Digital Mathematics Library

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is well known that a plane graph of minimum degree five contains light edges and light triangles. In this paper we show that every plane graph of minimum degree five contains also light stars K1,3 and K1,4 and a light 4-path P₄. The results obtained for K1,3 and P₄ are best possible.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270171
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1035,
     author = {Stanislav Jendrol' and Tom\'a\v s Madaras},
     title = {On light subgraphs in plane graphs of minimum degree five},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {16},
     year = {1996},
     pages = {207-217},
     zbl = {0877.05050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1035}
}
Stanislav Jendrol'; Tomáš Madaras. On light subgraphs in plane graphs of minimum degree five. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 207-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1035/

[000] [1] J.A. Bondy and U.S.R. Murty, Graph theory with applications (North Holland, Amsterdam 1976). | Zbl 1226.05083

[001] [2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Math. Notes 46 (1989) 835-837, doi: 10.1007/BF01139613. | Zbl 0717.05034

[002] [3] O.V. Borodin and D.P. Sanders, On light edges and triangles in planar graphs of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103. | Zbl 0813.05020

[003] [4] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics (to appear). | Zbl 0891.05025

[004] [5] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236; or in: N.L. Biggs, E.K. Lloyd, R.J. Wilson (eds.), Graph Theory 1737 - 1936 (Clarendon Press, Oxford 1977). | Zbl 48.0664.02

[005] [6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. źas. SAV (Math. Slovaca) 5 (1955) 111-113.

[006] [7] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.

[007] [8] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968. | Zbl 35.0511.01