Observations on maps and δ-matroids
R. Bruce Richter
Discussiones Mathematicae Graph Theory, Tome 16 (1996), p. 197-205 / Harvested from The Polish Digital Mathematics Library

Using a Δ-matroid associated with a map, Anderson et al (J. Combin. Theory (B) 66 (1996) 232-246) showed that one can decide in polynomial time if a medial graph (a 4-regular, 2-face colourable embedded graph) in the sphere, projective plane or torus has two Euler tours that each never cross themselves and never use the same transition at any vertex. With some simple observations, we extend this to the Klein bottle and the sphere with 3 crosscaps and show that the argument does not work in any other surface. We also show there are other Δ-matroids that one can associate with an embedded graph.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270187
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1034,
     author = {R. Bruce Richter},
     title = {Observations on maps and $\delta$-matroids},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {16},
     year = {1996},
     pages = {197-205},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1034}
}
R. Bruce Richter. Observations on maps and δ-matroids. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 197-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1034/

[000] [1] L.D. Andersen, A. Bouchet and W. Jackson, Orthogonal A-trails of 4-regular graphs embedded in surfaces of low genus, J. Combin. Theory (B) 66 (1996) 232-246, doi: 10.1006/jctb.1996.0017. | Zbl 0855.05047

[001] [2] A. Bouchet, Maps and Δ-matroids, Discrete Math. 78 (1989) 59-71, doi: 10.1016/0012-365X(89)90161-1. | Zbl 0719.05019

[002] [3] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Prog. 38 (1987) 147-159, doi: 10.1007/BF02604639. | Zbl 0633.90089

[003] [4] A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations, in: Theory of Graphs (P. Erdős and G. Katona, eds.) North-Holland, Amsterdam (1968) 219-230. | Zbl 0159.54201

[004] [5] R.B. Richter, Spanning trees, Euler tours, medial graphs, left-right paths and cycle spaces, Discrete Math. 89 (1991) 261-268, doi: 10.1016/0012-365X(91)90119-M. | Zbl 0728.05015

[005] [6] E. Tardos, Generalized matroids and supermodular colorings, in Matroid Theory (Szeged 1982), North- Holland, Amsterdam (1985) 359-382.

[006] [7] T. Zaslavsky, Biased graphs I, J. Combin. Theory (B) 47 (1989) 32-52, doi: 10.1016/0095-8956(89)90063-4. | Zbl 0714.05057