Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅
Sebastian Urbański
Discussiones Mathematicae Graph Theory, Tome 16 (1996), p. 173-179 / Harvested from The Polish Digital Mathematics Library

The paper gives an account of previous and recent attempts to determine the order of a smallest graph not containing K₅ and such that every 2-coloring of its edges results in a monochromatic triangle. A new 14-vertex K₄-free graph with the same Ramsey property in the vertex coloring case is found. This yields a new construction of one of the only two known 15-vertex (3,3)-Ramsey graphs not containing K₅.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270305
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1032,
     author = {Sebastian Urba\'nski},
     title = {Remarks on 15-vertex (3,3)-ramsey graphs not containing K5},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {16},
     year = {1996},
     pages = {173-179},
     zbl = {0877.05038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1032}
}
Sebastian Urbański. Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 173-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1032/

[000] [1] J. Bukor, A note on the Folkman number F(3,3;5), Math. Slovaca 44 (1994) 479-480. | Zbl 0813.05046

[001] [2] P. Erdős and A. Hajnal, Research problem 2-5, J. Combin. Theory 2 (1967) 104.

[002] [3] M. Erickson, An upper bound for the Folkman number F(3,3;5), J. Graph Theory 17 (1993) 679-681, doi: 10.1002/jgt.3190170604. | Zbl 0791.05039

[003] [4] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970) 19-24, doi: 10.1137/0118004. | Zbl 0193.53103

[004] [5] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K₄, Graphs and Combinatorics 2 (1986) 135-144, doi: 10.1007/BF01788087. | Zbl 0596.05037

[005] [6] R.L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Theory 4 (1968) 300, doi: 10.1016/S0021-9800(68)80009-2. | Zbl 0153.54102

[006] [7] R.L. Graham and J.H. Spencer, On small graphs with forced monochromatic triangles, in: Recent Trends in Graph Theory. Lecture Notes in Math. 186 (Springer-Verlag, Berlin, 1971) 137-141, doi: 10.1007/BFb0059431.

[007] [8] N. Hadziivanov and N. Nenov, On Graham-Spencer number, C.R. Acad. Bulg. Sci. 32 (1979) 155-158.

[008] [9] N. Hadziivanov and N. Nenov, On Ramsey graphs, God. Sofij. Univ. Fak. Mat. Mech. 78 (1984) 211-214.

[009] [10] N. Hadziivanov and N. Nenov, Every (3,3)-Ramsey graph without 5-cliques has more than 11 vertices, Serdica 11 (1985) 341-356. | Zbl 0641.05041

[010] [11] R.W. Irving, On a bound of Graham and Spencer for graph-coloring constant, J. Combin. Theory 15 (1973) 200-203, doi: 10.1016/0095-8956(73)90021-X. | Zbl 0247.05119

[011] [12] S. Lin, On Ramsey numbers and Kr-coloring of graphs, J. Combin. Theory (B) 12 (1972) 82-92, doi: 10.1016/0095-8956(72)90034-2. | Zbl 0229.05117

[012] [13] N. Nenov, New lower bound for Graham-Spencer number, Serdica 6 (1980) 373-383. | Zbl 0492.05040

[013] [14] N. Nenov, An example of 15-vertex (3,3)-Ramsey graph with the clique number 4, C.R. Acad. Bulg. Sci. 34 (1981) 1487-1489. | Zbl 0489.05041

[014] [15] M. Schauble, Zu einem Kantenfarbungsproblem, Wiss. Z. Th. Ilemenau 15 (1969) 55-58. | Zbl 0205.28404

[015] [16] J. Spencer, Three hundred million points suffice, J. Combin. Theory (A) 49 (1988) 210-217. See erratum in 50 p. 323. | Zbl 0676.05001