Poisson convergence of numbers of vertices of a given degree in random graphs
Wojciech Kordecki
Discussiones Mathematicae Graph Theory, Tome 16 (1996), p. 157-172 / Harvested from The Polish Digital Mathematics Library

The asymptotic distributions of the number of vertices of a given degree in random graphs, where the probabilities of edges may not be the same, are given. Using the method of Poisson convergence, distributions in a general and particular cases (complete, almost regular and bipartite graphs) are obtained.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270487
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1031,
     author = {Wojciech Kordecki},
     title = {Poisson convergence of numbers of vertices of a given degree in random graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {16},
     year = {1996},
     pages = {157-172},
     zbl = {0877.05053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1031}
}
Wojciech Kordecki. Poisson convergence of numbers of vertices of a given degree in random graphs. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 157-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1031/

[000] [1] A.D. Barbour, Poisson convergence and random graphs, Math. Proc. Camb. Phil. Soc. 92 (1982) 349-359, doi: 10.1017/S0305004100059995. | Zbl 0498.60016

[001] [2] A.D. Barbour and G.K. Eagleason, Poisson approximation for some statistics based on exchangeable trials, Adv. Appl. Prob. 15 (1983) 585-600, doi: 10.2307/1426620. | Zbl 0511.60025

[002] [3] A.D. Barbour, L. Holst and S. Janson, Poisson approximation (Clarendon Press, Oxford, 1992). | Zbl 0746.60002

[003] [4] M. Karoński and A. Ruciński, Poisson convergence and semiinduced properties of random graphs, Math. Proc. Camb. Phil. Soc. 101 (1987) 291-300, doi: 10.1017/S0305004100066664. | Zbl 0627.60016

[004] [5] V.L. Klee, D.G. Larman and E.M. Wright, The proportion of labelled bipartite graphs which are connected, J. London Math. Soc. 24 (1981) 397-404, doi: 10.1112/jlms/s2-24.3.397. | Zbl 0452.05040

[005] [6] W. Kordecki, Vertices of given degree in a random graph, Prob. Math. Stat. 11 (1991) 287-290. | Zbl 0753.60015

[006] [7] Z. Palka, On the degrees of vertices in a bichromatic random graph, Period. Math. Hung. 15 (1984) 121-126, doi: 10.1007/BF01850725. | Zbl 0514.05053

[007] [8] Z. Palka, Asymptotic properties of random graphs, Dissertationes Mathematicae, CCLXXV (PWN, Warszawa, 1998). | Zbl 0675.05055

[008] [9] Z. Palka and A. Ruciński, Vertex-degrees in a random subgraph of a regular graph, Studia Scienc. Math. Hung. 25 (1990) 209-214. | Zbl 0643.60009