In this paper we consider partitions (resp. packings) of graphs without odd chordless cycles into cliques of order at least 2. We give a structure theorem, min-max results and characterization theorems for this kind of partitions and packings.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1029, author = {Zbigniew Lonc}, title = {Clique packings and clique partitions of graphs without odd chordless cycles}, journal = {Discussiones Mathematicae Graph Theory}, volume = {16}, year = {1996}, pages = {143-149}, zbl = {0877.05044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1029} }
Zbigniew Lonc. Clique packings and clique partitions of graphs without odd chordless cycles. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 143-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1029/
[000] [1] G. Cornuéjols, D. Hartvigsen and W. Pulleyblank, Packings subgraphs in a graph, Operations Research Letters 1 (1982) 139-143, doi: 10.1016/0167-6377(82)90016-5. | Zbl 0488.90070
[001] [2] P. Hell and D.G. Kirkpatrick, On the complexity of general graph factor problems, SIAM Journal of Computing 12 (1983) 601-609, doi: 10.1137/0212040. | Zbl 0525.68023
[002] [3] P. Hell and D.G. Kirkpatrick, Packing by cliques and by finite families of graphs, Discrete Math. 49 (1984) 45-59, doi: 10.1016/0012-365X(84)90150-X. | Zbl 0582.05046
[003] [4] Z. Lonc, Chain partitions of ordered sets, Order 11 (1994) 343-351, doi: 10.1007/BF01108766. | Zbl 0816.06004
[004] [5] L. Lovász and M.D. Plummer, Matching Theory (North Holland, Amsterdam, 1986).