In this paper we give all pairs of non mutually placeable (p,q)-bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G)+e(H) ≤ 2p+q-1.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1025, author = {Beata Orchel}, title = {Placing bipartite graphs of small size II}, journal = {Discussiones Mathematicae Graph Theory}, volume = {16}, year = {1996}, pages = {93-110}, zbl = {0877.05046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1025} }
Beata Orchel. Placing bipartite graphs of small size II. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 93-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1025/
[000] [1] C. Berge, Graphs (North-Holland Mathematical Library 6, Amsterdam, New York, Oxford 1985).
[001] [2] B. Bollobás, S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8. | Zbl 0387.05020
[002] [3] A.P. Catlin, Subgraphs of graphs 1, Discrete Math. 10 (1974) 225-233, doi: 10.1016/0012-365X(74)90119-8. | Zbl 0289.05122
[003] [4] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A. | Zbl 0791.05080
[004] [5] G. Frobenius, Über zerlegbare Determinanten, Sitzungsber, König. Preuss. Akad. Wiss. XVIII (1917) 274-277.
[005] [6] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26. | Zbl 0010.34503
[006] [7] P. Hajnal and M. Szegedy, On packing bipartite graphs, Combinatorica 12 (1992) 295-301, doi: 10.1007/BF01285818. | Zbl 0772.05079
[007] [8] B. Orchel, Placing bipartite graphs of small size I, Folia Scientiarum Universitatis Technicae Resoviensis, 118 (1993) 51-58.
[008] [9] R. Rado, A theorem on general measure functions, Proc. London Math. Soc. 44 (2) (1938) 61-91, doi: 10.1112/plms/s2-44.1.61. | Zbl 0019.05501
[009] [10] S.K. Teo and H.P. Yap, Packing two graphs of order n having total size at most 2n-2, Graphs and Combinatorics 6 (1990) 197-205, doi: 10.1007/BF01787731. | Zbl 0727.05049
[010] [11] A.P. Wojda and P. Vaderlind, Packing bipartite graphs, to appear.