Associative products are defined using a scheme of Imrich & Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product ⊗ and parameter p pairs are multiplicative, that is, p(G⊗H) ≥ p(G)p(H) for all graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The parameters are related to independence, domination and irredundance. This includes Vizing's conjecture directly, and indirectly the Shannon capacity of a graph and Hedetniemi's coloring conjecture.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1023, author = {Richard J. Nowakowski and Douglas F. Rall}, title = {Associative graph products and their independence, domination and coloring numbers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {16}, year = {1996}, pages = {53-79}, zbl = {0865.05071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1023} }
Richard J. Nowakowski; Douglas F. Rall. Associative graph products and their independence, domination and coloring numbers. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 53-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1023/
[000] [1] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (Prindle, Weber & Schmidt International Series, 1979). | Zbl 0403.05027
[001] [2] C. Berge, The Theory of Graphs and Its Applications (London, Methuen, 1962) MR 24 #A2381.
[002] [3] M. Borowiecki, On chromatic number of products of two graphs, Coll. Math. 25 (1972) 49-52; MR 46 #1630. | Zbl 0239.05114
[003] [4] M. Borowiecki, On the graphs with minimaximal kernels, Scientific Papers Inst. Math. Wroc aw Techn. Univ. 17 (1977) 3-7; Zbl. 398:05C064. | Zbl 0398.05064
[004] [5] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468; MR 80m:05087. | Zbl 0393.05044
[005] [6] M. El-Zahar and N. W. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121- 126; MR 87a:05067.
[006] [7] D. Geller and S. Stahl, The chromatic number and other functions of the lexicographic product, J. Combin. Theory (B) 19 (1975) 87-95; MR 52#13462. | Zbl 0282.05114
[007] [8] E.N. Gilbert, Unpublished Technical Memorandum, Bell Telephone Laboratories, Murray Hill, New Jersey (1972).
[008] [9] F. Harary and G. W. Wilcox, Boolean operations on graphs, Math. Scand. 20 (1967) 41-51; MR 35 #2775. | Zbl 0152.22801
[009] [10] B. Hartnell and D. Rall, On Vizing's Conjecture, Congressus Numerantium 82 (1991) 87-96; MR 92k:05071.
[010] [11] B. Hartnell and D. Rall, Vizing's conjecture and the one-half argument, Discussiones Mathematicae-Graph Theory 15 (1995) 205-216, doi: 10.7151/dmgt.1018. | Zbl 0845.05074
[011] [12] S. T. Hedetniemi, Homomorphisms of graphs and automata, University of Michigan Technical Report 03105-44-T (1966).
[012] [13] P. Hell and D.J. Miller, Achromatic numbers and graph operations, Discrete Math. 108 (1992) 297-305; MR 93k:05062. | Zbl 0760.05040
[013] [14] P. Hell and F.S. Roberts, Analogues of the Shannon capacity of a graph, Theory and practice of combinatorics, SE-North-Holland Math. Stud., 60, North-Holland, Amsterdam-New York (1982) 155-168; MR 86k:05053.
[014] [15] A.J.W. Hilton, R. Rado and S.H. Scott, A (< 5)-colour theorem for planar graphs, Bull. London Math. Soc. 5 (1973) 302-306; MR 48 #1960. | Zbl 0278.05103
[015] [16] L.-H. Hsu, On a multiplicative graph function conjecture, Discrete Math. 45 (1983) 245-253; MR 84j:05099.
[016] [17] L.-H. Hsu, On a strongly multiplicative graph function conjecture, Chinese J. Math. 13(2) (1985) 103-108; MR 87a:05127.
[017] [18] W. Imrich and H. Izbicki, Associative Products of Graphs, Monatshefte für Mathematik 80 (1975) 277-281; MR 53 #7864. | Zbl 0328.05136
[018] [19] M.S. Jacobson and L.S. Kinch, On the domination of the products of graphs II, trees, J. Graph Theory 10 (1986) 97-106; MR 87e:05056. | Zbl 0584.05053
[019] [20] L. Lovász, On the Shannon Capacity of a Graph, IEEE Trans. on Inform. Theory, IT-25(1) (1979) 1-7; MR 81g:05095.
[020] [21] J. Ne set ril and V. Rödl, Products of graphs and their applications, in: Graph Theory, agów 1981 (Lecture Notes in Mathematics 1018, Springer, Berlin, 1983) 151-160; MR 85d:05179.
[021] [22] R.J. Nowakowski and D. Rall, A survey of the introduction and history of graph products, preprint.
[022] [23] O. Ore, Theory of Graphs (Amer. Math. Colloq. Publ., Vol. 38, Amer. Math. Soc., Providence, R.I., 1962).
[023] [24] V. Pus, Chromatic number of products of graphs, Comment. Math. Univ. Carolin. 29 (1988) 457-463; MR 90a:05088.
[024] [25] F.S. Roberts, Graph theory and its applications to problems of society, CBMS-NSF monographs (1978) #29 (S.I.A.M, Philadelphia, PA); MR 80g:90036. | Zbl 0452.05001
[025] [26] F.S. Roberts, On the mobile radio frequency assignment problem and the traffic light phasing problem, in: Second International Conference on Combinatorial Mathematics (New York, 1978), Annals New York Acad. Sci. 319 (1979) 466-483; MR 81e:05071.
[026] [27] M. Rosenfeld, On a Problem of C.E. Shannon in Graph Theory, Proc. Amer. Math. Soc. 18 (1967) 315-319; MR 34 #7405. | Zbl 0147.42801
[027] [28] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525; MR 20 #1322. | Zbl 0079.39202
[028] [29] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959) 693-696; MR 22 #1524. | Zbl 0095.37802
[029] [30] C.E. Shannon, The zero error capacity of a noisy channel, I.R.E., Trans. on Inform. Theory, IT-2 (1956) 8-19; MR 19 #623.
[030] [31] V.G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30-43; MR 35 #81.