On k-factor-critical graphs
Odile Favaron
Discussiones Mathematicae Graph Theory, Tome 16 (1996), p. 41-51 / Harvested from The Polish Digital Mathematics Library

A graph is said to be k-factor-critical if the removal of any set of k vertices results in a graph with a perfect matching. We study some properties of k-factor-critical graphs and show that many results on q-extendable graphs can be improved using this concept.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270728
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1022,
     author = {Odile Favaron},
     title = {On k-factor-critical graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {16},
     year = {1996},
     pages = {41-51},
     zbl = {0865.05061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1022}
}
Odile Favaron. On k-factor-critical graphs. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 41-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1022/

[000] [1] V. N. Bhat and S. F. Kapoor, The Powers of a Connected Graph are Highly Hamiltonian, Journal of Research of the National Bureau of Standards, Section B 75 (1971) 63-66. | Zbl 0231.05109

[001] [2] G. Chartrand, S. F. Kapoor and D. R. Lick, n-Hamiltonian Graphs, J. Combin. Theory 9 (1970) 308-312, doi: 10.1016/S0021-9800(70)80069-2.

[002] [3] O. Favaron, Stabilité, domination, irredondance et autres parametres de graphes, These d'Etat, Université de Paris-Sud, 1986.

[003] [4] O. Favaron, E. Flandrin and Z. Ryjáek, Factor-criticality and matching extension in DCT-graphs, Preprint.

[004] [5] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 135-139. | Zbl 0129.39802

[005] [6] L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179-195, doi: 10.1007/BF01889914. | Zbl 0247.05156

[006] [7] L. Lovász and M. D. Plummer, Matching Theory, Annals of Discrete Math. 29 (1986).

[007] [8] M. Paoli, W. W. Wong and C. K. Wong, Minimum k-Hamiltonian Graphs II, J. Graph Theory 10 (1986) 79-95, doi: 10.1002/jgt.3190100111. | Zbl 0592.05043

[008] [9] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210, doi: 10.1016/0012-365X(80)90037-0.

[009] [10] M. D. Plummer, Toughness and matching extension in graphs, Discrete Math. 72 (1988) 311-320, doi: 10.1016/0012-365X(88)90221-X. | Zbl 0683.05034

[010] [11] M. D. Plummer, Degree sums, neighborhood unions and matching extension in graphs, in: R. Bodendiek, ed., Contemporary Methods in Graph Theory (B. I. Wiessenschaftsverlag, Mannheim, 1990) 489-502. | Zbl 0745.05041

[011] [12] M. D. Plummer, Extending matchings in graphs: A survey, Discrete Math. 127 (1994) 277-292, doi: 10.1016/0012-365X(92)00485-A.

[012] [13] Z. Ryjáček, Matching extension in K1,r-free graphs with independent claw centers, to appear in Discrete Math. | Zbl 0872.05044

[013] [14] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107-111, doi: 10.1112/jlms/s1-22.2.107. | Zbl 0029.23301

[014] [15] W. W. Wong and C. K. Wong, Minimum k-Hamiltonian Graphs, J. Graph Theory 8 (1984) 155-165, doi: 10.1002/jgt.3190080118. | Zbl 0534.05040