Radii and centers in iterated line digraphs
Martin Knor ; L'udovít Niepel
Discussiones Mathematicae Graph Theory, Tome 16 (1996), p. 17-26 / Harvested from The Polish Digital Mathematics Library

We show that the out-radius and the radius grow linearly, or "almost" linearly, in iterated line digraphs. Further, iterated line digraphs with a prescribed out-center, or a center, are constructed. It is shown that not every line digraph is admissible as an out-center of line digraph.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270161
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1020,
     author = {Martin Knor and L'udov\'\i t Niepel},
     title = {Radii and centers in iterated line digraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {16},
     year = {1996},
     pages = {17-26},
     zbl = {0876.05040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1020}
}
Martin Knor; L'udovít Niepel. Radii and centers in iterated line digraphs. Discussiones Mathematicae Graph Theory, Tome 16 (1996) pp. 17-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1020/

[000] [1] M. Aigner, On the linegraph of a directed graph, Math. Z. 102 (1967) 56-61, doi: 10.1007/BF01110285. | Zbl 0158.20901

[001] [2] L.W. Beineke and R.J. Wilson, Selected Topics in Graph Theory (Academic Press, London, 1978).

[002] [3] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Reading, 1990). | Zbl 0688.05017

[003] [4] M.A. Fiol, J.L.A. Yebra and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33 (1984) 400-403, doi: 10.1109/TC.1984.1676455. | Zbl 0528.68048

[004] [5] M. Knor, L'. Niepel and L'. Soltés, Centers in Iterated Line Graphs, Acta Math. Univ. Comenianae LXI, 2 (1992) 237-241.

[005] [6] M. Knor, L'. Niepel and L'. Soltés, Distances in Iterated Line Graphs, Ars Combin. (to appear).