A hereditary property R of graphs is said to be reducible if there exist hereditary properties P₁,P₂ such that G ∈ R if and only if the set of vertices of G can be partitioned into V(G) = V₁∪V₂ so that ⟨V₁⟩ ∈ P₁ and ⟨V₂⟩ ∈ P₂. The problem of the factorization of reducible properties into irreducible factors is investigated.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1017, author = {P. Mih\'ok and R. Vasky}, title = {On the factorization of reducible properties of graphs into irreducible factors}, journal = {Discussiones Mathematicae Graph Theory}, volume = {15}, year = {1995}, pages = {195-203}, zbl = {0845.05076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1017} }
P. Mihók; R. Vasky. On the factorization of reducible properties of graphs into irreducible factors. Discussiones Mathematicae Graph Theory, Tome 15 (1995) pp. 195-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1017/
[000] [1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, 1991) 42-69.
[001] [2] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). | Zbl 0971.05046
[002] [3] P. Mihók, G. Semaniin, Reducible properties of graphs, Discussiones Math.- Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.
[003] [4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043
[004] [5] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs (to appear). | Zbl 0911.05043