We prove: (1) that can be arbitrarily large, where and are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1016, author = {Mieczys\l aw Borowiecki and Ewa Drgas-Burchardt and Peter Mih\'ok}, title = {Generalized list colourings of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {15}, year = {1995}, pages = {185-193}, zbl = {0845.05046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1016} }
Mieczysław Borowiecki; Ewa Drgas-Burchardt; Peter Mihók. Generalized list colourings of graphs. Discussiones Mathematicae Graph Theory, Tome 15 (1995) pp. 185-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1016/
[000] [1] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
[001] [2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. | Zbl 0027.26403
[002] [3] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.
[003] [4] T. Gallai, Kritiche Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395. | Zbl 0144.23204
[004] [5] F. Harary, Graph Theory (Addison Wesley, Reading, Mass. 1969).
[005] [6] V.G. Vizing, Colouring the vertices of a graph in prescribed colours (in Russian), Diskret. Analiz 29 (1976) 3-10.