The 'two paths problem' is stated as follows. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two vertex-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂ respectively. In this paper we give a linear (O(|V|+ |E|)) algorithm to solve the above problem on a permutation graph.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1013, author = {C.P. Gopalakrishnan and C. Pandu Rangan}, title = {A linear algorithm for the two paths problem on permutation graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {15}, year = {1995}, pages = {147-166}, zbl = {0845.05085}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1013} }
C.P. Gopalakrishnan; C. Pandu Rangan. A linear algorithm for the two paths problem on permutation graphs. Discussiones Mathematicae Graph Theory, Tome 15 (1995) pp. 147-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1013/
[000] [BM 76] J.A. Bondy, U.S.R. Murthy, Graph Theory with Applications (Academic Press, 1976).
[001] [ET 75] S. Even, R.E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4 (1975) 507-518, doi: 10.1137/0204043. | Zbl 0328.90031
[002] [HT 74] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568, doi: 10.1145/321850.321852. | Zbl 0307.68025
[003] [G 80] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).
[004] [MT 89] B. Mishra, R.E. Tarjan, A linear time algorithm for finding an ambitus (Technical Report 464, August 1989, New York University).
[005] [O 80] T. Ohtsuki, The two disjoint path problem and wire routing design, In: Proc. of the 17th Symp. of Res. Inst. of Electrical Comm. (1980) 257-267.
[006] [PS 78] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, J. of the ACM 25 (1978) 1-9, doi: 10.1145/322047.322048. | Zbl 0365.68026
[007] [RP] P.B. Ramprasad, C. Pandu Rangan, A new linear time algorithm for the two path problem on planar graphs (Technical Report, Department of Computer Science, IIT, Madras, 1991).
[008] [S 80] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. of the ACM 27 (1980) 445-456, doi: 10.1145/322203.322207. | Zbl 0475.68042
[009] [S 83] J. Spinrad, Transitive orientation in O(n²) time, In: Proc. of Fifteenth ACM Symposium on the Theory of Computing (1983) 457-466, doi: 10.1145/800061.808777.
[010] [KPS 91] S.V. Krishnan, C. Pandu Rangan, S. Seshadri, A. Schwill, Two Disjoint Paths in Chordal graphs (Technical Report, 2/91, February 1991, University of Oldenburg, Germany).