Hamiltonicity in multitriangular graphs
Peter J. Owens ; Hansjoachim Walther
Discussiones Mathematicae Graph Theory, Tome 15 (1995), p. 77-88 / Harvested from The Polish Digital Mathematics Library

The family of 5-valent polyhedral graphs whose faces are all triangles or 3s-gons, s ≥ 9, is shown to contain non-hamiltonian graphs and to have a shortness exponent smaller than one.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:270460
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1009,
     author = {Peter J. Owens and Hansjoachim Walther},
     title = {Hamiltonicity in multitriangular graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {15},
     year = {1995},
     pages = {77-88},
     zbl = {0831.05040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1009}
}
Peter J. Owens; Hansjoachim Walther. Hamiltonicity in multitriangular graphs. Discussiones Mathematicae Graph Theory, Tome 15 (1995) pp. 77-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1009/

[000] [1] E. J. Grinberg, Planehomogeneous graphs of degree three without Hamiltonian circuits, Latvian Math. Yearbook 4 (1968) 51-58 (in Russian). | Zbl 0185.27901

[001] [2] B. Grünbaum and H. Walther, Shortness exponents of families of graphs, J. Combin. Theory (A) 14 (1973) 364-385, doi: 10.1016/0097-3165(73)90012-5. | Zbl 0263.05103

[002] [3] J. Harant, Über den Shortness Exponent regulärer Polyedergraphen mit genau zwei Typen von Elementarflächen, Thesis A, Ilmenau Institute of Technology (1982).

[003] [4] D. A. Holton and B. D. McKay, The smallest non-hamiltonian 3-connected cubic planar graphs have 38 vertices, J. Combin. Theory (B) 45 (1988) 305-319, with correction, J. Combin. Theory (B) 47 (1989) 248. | Zbl 0607.05051

[004] [5] P. J. Owens, Non-hamiltonian simple 3-polytopes whose faces are all 5-gons or 7-gons, Discrete Math. 33 (1981) 107-109. | Zbl 0473.05043

[005] [6] P. J. Owens, Regular planar graphs with faces of only two types and shortness parameters, J. Graph Theory 8 (1984) 253-275, doi: 10.1002/jgt.3190080207. | Zbl 0541.05037

[006] [7] P. J. Owens, Simple 3-polytopal graphs with edges of only two types and shortness coefficients, Discrete Math. 59 (1986) 107-114, doi: 10.1016/0012-365X(86)90074-9. | Zbl 0586.05027

[007] [8] P. J. Owens, Shortness exponents, simple polyhedral graphs and large bridges, unpublished.

[008] [9] M. Tkáč, Shortness coefficients of simple 3-polytopal graphs with edges of only two types, Discrete Math. 103 (1992) 103-110, doi: 10.1016/0012-365X(92)90045-H. | Zbl 0776.05093

[009] [10] M. Tkáč, Simple 3-polytopal graphs with edges of only two types and shortness coefficients, Math. Slovaca 42 (1992) 147-152. | Zbl 0768.05065

[010] [11] M. Tkáč, On shortness coefficients of simple 3-polytopal graphs with edges of only one type of face besides triangles, Discrete Math. 128 (1994) 407-413, doi: 10.1016/0012-365X(94)90133-3. | Zbl 0798.05018

[011] [12] W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21 (1946) 98-101, doi: 10.1112/jlms/s1-21.2.98. | Zbl 0061.41306

[012] [13] H. Walther, Über das Problem der Existenz von Hamiltonkreisen in planaren regulären Graphen, Math. Nachr. 39 (1969) 277-296, doi: 10.1002/mana.19690390407. | Zbl 0169.26401

[013] [14] H. Walther, Note on the problems of J.Zaks concerning Hamiltonian 3-polytopes, Discrete Math. 33 (1981) 107-109, doi: 10.1016/0012-365X(81)90265-X.

[014] [15] H. Walther, A non-hamiltonian five-regular multitriangular polyhedral graph (to appear). | Zbl 0854.05065

[015] [16] J. Zaks, Non-Hamiltonian non-Grinbergian graphs, Discrete Math. 17 (1977) 317-321, doi: 10.1016/0012-365X(77)90165-0. | Zbl 0357.05052

[016] [17] J. Zaks, Non-Hamiltonian simple 3-polytopes having just two types of faces, Discrete Math. 29 (1980) 87-101, doi: 10.1016/0012-365X(90)90289-T. | Zbl 0445.05065

[017] [18] J. Zaks, Non-hamiltonian simple planar graphs, in: Annals of Discrete Math. 12 (North - Holland, 1982) 255-263. | Zbl 0493.05022