Problems remaining NP-complete for sparse or dense graphs
Ingo Schiermeyer
Discussiones Mathematicae Graph Theory, Tome 15 (1995), p. 33-41 / Harvested from The Polish Digital Mathematics Library

For each fixed pair α,c > 0 let INDEPENDENT SET (mcnα) and INDEPENDENT SET (m()-cnα) be the problem INDEPENDENT SET restricted to graphs on n vertices with mcnα or m()-cnα edges, respectively. Analogously, HAMILTONIAN CIRCUIT (mn+cnα) and HAMILTONIAN PATH (mn+cnα) are the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted to graphs with mn+cnα edges. For each ϵ > 0 let HAMILTONIAN CIRCUIT (m ≥ (1 - ϵ)(ⁿ₂)) and HAMILTONIAN PATH (m ≥ (1 - ϵ)(ⁿ₂)) be the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted to graphs with m ≥ (1 - ϵ)(ⁿ₂) edges. We prove that these six restricted problems remain NP-complete. Finally, we consider sufficient conditions for a graph to have a Hamiltonian circuit. These conditions are based on degree sums and neighborhood unions of independent vertices, respectively. Lowering the required bounds the problem HAMILTONIAN CIRCUIT jumps from ’easy’ to ’NP-complete’.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:270554
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1004,
     author = {Ingo Schiermeyer},
     title = {Problems remaining NP-complete for sparse or dense graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {15},
     year = {1995},
     pages = {33-41},
     zbl = {0829.05042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1004}
}
Ingo Schiermeyer. Problems remaining NP-complete for sparse or dense graphs. Discussiones Mathematicae Graph Theory, Tome 15 (1995) pp. 33-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1004/

[000] [1] J. A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).

[001] [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976). | Zbl 1226.05083

[002] [3] H. J. Broersma, J. van den Heuvel and H. J. Veldman, A generalization of Ore's Theorem involving neighborhood unions, Discrete Math. 122 (1993) 37-49, doi: 10.1016/0012-365X(93)90285-2. | Zbl 0789.05058

[003] [4] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69. | Zbl 0047.17001

[004] [5] E. Flandrin, H. A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Math. 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I. | Zbl 0746.05038

[005] [6] M. R. Garey and D. S. Johnson, Computers and I, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979). | Zbl 0411.68039

[006] [7] J. Kratochvíl, P. Savický and Z. Tuza, One more occurrence of variables makes jump from trivial to NP-complete, SIAM J. Comput. 22 (1993) 203-210, doi: 10.1137/0222015. | Zbl 0767.68057

[007] [8] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.

[008] [9] I. Schiermeyer, The k-Satisfiability problem remains NP-complete for dense families, Discrete Math. 125 (1994) 343-346, doi: 10.1016/0012-365X(94)90175-9. | Zbl 0803.68052