Let L be the set of all hereditary and additive properties of graphs. For P₁, P₂ ∈ L, the reducible property R = P₁∘P₂ is defined as follows: G ∈ R if and only if there is a partition V(G) = V₁∪ V₂ of the vertex set of G such that and . The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the decomposition of a reducible property into irreducible ones.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1002, author = {P. Mih\'ok and G. Semani\v sin}, title = {Reducible properties of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {15}, year = {1995}, pages = {11-18}, zbl = {0829.05057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1002} }
P. Mihók; G. Semanišin. Reducible properties of graphs. Discussiones Mathematicae Graph Theory, Tome 15 (1995) pp. 11-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1002/
[000] [1] V. E. Alekseev, Range of values of entropy of hereditary classes of graphs, Diskretnaja matematika 4 (1992) 148-157 (Russian). | Zbl 0766.05088
[001] [2] M. Borowiecki, P. Mihók, Hereditary properties of graphs in: Advances in Graph Theory, Vishwa International Publication, India, (1991) 42-69.
[002] [3] G. Chartrand, L. Lesniak, Graphs and Digraphs (Wadsworth & Brooks/Cole, Monterey California 1986). | Zbl 0666.05001
[003] [4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043
[004] [5] P. Mihók, An extension of Brook's theorem, Annals of Discrete Math. 51 (1992) 235-236. | Zbl 0766.05028
[005] [6] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, (to appear). | Zbl 0911.05043
[006] [7] M. Simonovits, Extremal graph theory, in: L. W. Beineke and R. J. Wilson eds. Selected Topics in Graph Theory 2 (Academic Press, London, 1983) 161-200.
[007] [8] E. R. Scheinerman, On the structure of hereditary classes of graphs, Journal of Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414. | Zbl 0609.05057
[008] [9] E. R. Scheinerman, J. Zito, On the size of hereditary classes of graphs, J. Combin. Theory (B) 61 (1994) 16-39, doi: 10.1006/jctb.1994.1027. | Zbl 0811.05048