A quasiorder (relation), also known as a preorder, is a reflexive and transitive relation. The quasiorders on a set A form a complete lattice with respect to set inclusion. Assume that A is a set such that there is no inaccessible cardinal less than or equal to |A|; note that in Kuratowski's model of ZFC, all sets A satisfy this assumption. Generalizing the 1996 result of Ivan Chajda and Gábor Czéedli, also Tamás Dolgos' recent achievement, we prove that in this case the lattice of quasiorders on A is five-generated, as a complete lattice.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1248, author = {J\'ulia Kulin}, title = {Quasiorder lattices are five-generated}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {36}, year = {2016}, pages = {59-70}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1248} }
Júlia Kulin. Quasiorder lattices are five-generated. Discussiones Mathematicae - General Algebra and Applications, Tome 36 (2016) pp. 59-70. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1248/
[000] [1] G. Czédli, A Horn sentence for involution lattices of quasiorders, Order 11 (1994), 391-395. doi: 10.1007/BF01108770 | Zbl 0817.06007
[001] [2] I. Chajda and G. Czédli, How to generate the involution lattice of quasiorders, Studia Sci. Math. Hungar. 32 (1996), 415-427. | Zbl 0864.06003
[002] [3] G. Czédli, Four-generated large equivalence lattices, Acta Sci. Math. 62 (1996), 47-69. | Zbl 0860.06009
[003] [4] G. Czédli, Lattice generation of small equivalences of a countable set, Order 13 (1996), 11-16. doi: 10.1007/BF00383964 | Zbl 0860.06010
[004] [5] G. Czédli, (1+1+2)-generated equivalence lattices, J. Algebra 221 (1999), 439-462. doi: 10.1006/jabr.1999.8003 | Zbl 0941.06009
[005] [6] T. Dolgos, Generating equivalence and quasiorder lattices over finite sets (in Hungarian) BSc Thesis, University of Szeged (2015).
[006] [7] K. Kuratowski, Sur l'état actuel de l'axiomatique de la théorie des ensembles, Ann. Soc. Polon. Math. 3 (1925), 146-147. | Zbl 51.0170.13
[007] [8] A. Levy, Basic Set Theory (Springer-Verlag, Berlin-Heidelberg-New York, 1979). doi: 10.1007/978-3-662-02308-2 | Zbl 0404.04001
[008] [9] H. Strietz, Finite partition lattices are four-generated, Proc. Lattice Th. Conf. Ulm (1975), 257-259.
[009] [10] H. Strietz, Über Erzeugendenmengen endlicher Partitionverbände, Studia Sci. Math. Hungar. 12 (1977), 1-17. | Zbl 0487.06003
[010] [11] G. Takách, Three-generated quasiorder lattices, Discuss. Math. Algebra and Stochastic Methods 16 (1996), 81-98. | Zbl 0865.06005
[011] [12] J. Tůma, On the structure of quasi-ordering lattices, Acta Universitatis Carolinae, Mathematica et Physica 43 (2002). doi: 65-74
[012] [13] L. Zádori, Generation of finite partition lattices, Lectures in Universal Algebra, Colloquia Math. Soc. J. Bolyai 43 Proc. Conf. Szeged (1983) 573-586 (North Holland, Amsterdam-Oxfor.