On the connectivity of the annihilating-ideal graphs
T. Tamizh Chelvam ; K. Selvakumar
Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015), p. 195-204 / Harvested from The Polish Digital Mathematics Library

Let R be a commutative ring with identity and 𝔸*(R) the set of non-zero ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸*(R) and two distinct vertices I₁ and I₂ are adjacent if and only if I₁I₂ = (0). In this paper, we examine the presence of cut vertices and cut sets in the annihilating-ideal graph of a commutative Artinian ring and provide a partial classification of the rings in which they appear. Using this, we obtain the vertex connectivity of some annihilating-ideal graphs.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276649
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1241,
     author = {T. Tamizh Chelvam and K. Selvakumar},
     title = {On the connectivity of the annihilating-ideal graphs},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {35},
     year = {2015},
     pages = {195-204},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1241}
}
T. Tamizh Chelvam; K. Selvakumar. On the connectivity of the annihilating-ideal graphs. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 195-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1241/

[000] [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: doi:10.1006/jabr.1998.7840 | Zbl 0941.05062

[001] [2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company (1969).

[002] [3] M. Axtell, N. Baeth and J. Stickles, Cut vertices in zero-divisor graph of finite commutative rings, Comm. Algebra 39 (2011), 2179-2188. doi: 10.1080/00927872.2010.488681 | Zbl 1226.13007

[003] [4] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (4) (2011), 727-739. doi: 10.1142/S0219498811004896 | Zbl 1276.13002

[004] [5] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), 741-753. doi: 10.1142/S0219498811004902 | Zbl 1276.13003

[005] [6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth and Brooks/Cole, Monterey, CA (1986).

[006] [7] B. Cote, C. Ewing, M. Huhn, C.M. Plaut and D. Weber, Cut sets in zero-divisor graphs of finite commutative rings, Comm. Algebra 39 (2011), 2849-2861. doi: 10.1080/00927872.2010.489534 | Zbl 1228.13011

[007] [8] I. Kaplansky, Commutative Rings, rev. ed. University of Chicago Press Chicago (1974). | Zbl 0296.13001

[008] [9] S.P. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103 | Zbl 1105.13007

[009] [10] T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput. 88 (2014), 277-288. | Zbl 1293.05156

[010] [11] A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam (1973).