A variation of zero-divisor graphs
Raibatak Sen Gupta ; M.K. Sen ; Shamik Ghosh
Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015), p. 159-176 / Harvested from The Polish Digital Mathematics Library
Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276462
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1238,
     author = {Raibatak Sen Gupta and M.K. Sen and Shamik Ghosh},
     title = {A variation of zero-divisor graphs},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {35},
     year = {2015},
     pages = {159-176},
     zbl = {1295.05163},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1238}
}
Raibatak Sen Gupta; M.K. Sen; Shamik Ghosh. A variation of zero-divisor graphs. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 159-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1238/

[000] [1] D.D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514. doi: 10.1006/jabr.1993.1171 | Zbl 0798.05067

[001] [2] D.F. Anderson, M.C. Axtell and J.A. Stickles Jr., Zero-divisor graphs in commutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspectives (2011), 23-45. doi: 10.1007/978-1-4419-6990-3_2

[002] [3] D.F. Anderson and P. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840

[003] [4] D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York 220 (2001), 61-72. | Zbl 1035.13004

[004] [5] N. Ashrafi, H.R. Maimani, M.R. Pournaki and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), 2851-2871. doi: 10.1080/00927870903095574 | Zbl 1219.05150

[005] [6] S.E. Atani, M.S. Kohan and Z.E. Sarvandi, An ideal-based zero-divisor graph of direct products of commutative rings, Discuss. Math. Gen. Algebra Appl. 34 (2014), 45-53. doi: 10.7151/dmgaa.1211 | Zbl 1301.05163

[006] [7] M. Axtell, J. Stickles and W. Trampbachls, Zero-divisor ideals and realizable zero-divisor graphs, Involve 2 (2009), 17-27. doi: 10.2140/involve.2009.2.17 | Zbl 1169.13301

[007] [8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. doi: 10.1016/0021-8693(88)90202-5

[008] [9] I. Bozic and Z. Petrovic, Zero-divisor graphs of matrices over commutative rings, Comm. Algebra 37 (2009), 1186-1192. doi: 10.1080/00927870802465951 | Zbl 1185.16031

[009] [10] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Annalen 157 (3) (1964), 215-218. doi: 10.1007/BF01362435 | Zbl 0135.07704

[010] [11] S. Redmond, The zero-divisor graph of a non-commutative ring, International Journal of Commutative Rings 1 (4) (2002), 203-211. | Zbl 1195.16038

[011] [12] D.B. West, Introduction to Graph Theory (Prentice Hall of India New Delhi, 2003).