In the paper the connections between the set of some maximal elements of a pseudo-BCI-algebra and deductive systems are established. Using these facts, a periodic part of a pseudo-BCI-algebra is studied.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1237, author = {Grzegorz Dymek}, title = {On a periodic part of pseudo-BCI-algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {139-157}, zbl = {06472904}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1237} }
Grzegorz Dymek. On a periodic part of pseudo-BCI-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 139-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1237/
[000] [1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190. | Zbl 1149.06010
[001] [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90. | Zbl 1294.06021
[002] [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167-187. | Zbl 1319.06014
[003] [4] G. Dymek, On a period of an element of pseudo-BCI-algebras, Discuss. Math. Gen. Algebra Appl., to appear..
[004] [5] G. Dymek, On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A, to appear..
[005] [6] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.
[006] [7] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE,Bucharest, 2008..
[007] [8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. doi: 10.3792/pja/1195522171 | Zbl 0207.29304
[008] [9] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46. | Zbl 1119.03068