An element of an ordered semigroup S is called an ordered idempotent if e ≤ e². Here we characterize the subsemigroup is also regular. If S is a regular ordered semigroup generated by its ordered idempotents then every ideal of S is generated as a subsemigroup by ordered idempotents.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1235, author = {Anjan Kumar Bhuniya and Kalyan Hansda}, title = {On the subsemigroup generated by ordered idempotents of a regular semigroup}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {205-211}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1235} }
Anjan Kumar Bhuniya; Kalyan Hansda. On the subsemigroup generated by ordered idempotents of a regular semigroup. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 205-211. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1235/
[000] [1] A.K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, communicated.
[001] [2] C. Eberhart, W. Williams and I. Kinch, Idempotent-generated regular semigroups, J. Austral. Math. Soc. 15 (1) (1973), 35-41. doi: 10.1017/S1446788700012726
[002] [3] T.E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208. doi: 10.1017/S0004972700045950 | Zbl 0172.31101
[003] [4] T.E. Hall, Orthodox semigroups, Pacific J. Math. 1, 677-686. doi: 10.2140/pjm.1971.39.677 | Zbl 0232.20124
[004] [5] T.E. Hall, On regular semigroups, J. Algebra 24 (1973), l-24. doi: 10.1016/0021-8693(73)90150-6
[005] [6] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discuss. Math. Gen. Alg. and Appl. 33 (2013), 73-84. doi: 10.7151/dmgaa.1195 | Zbl 1303.06014
[006] [7] K. Hansda, Regularity of subsemigroups generated by ordered idempotents, Quasigroups and Related Systems 22 (2014), 217-222. | Zbl 1314.06017
[007] [8] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1) (1992), 123-130. | Zbl 0745.06007
[008] [9] D.B. McAlister, A note on congruneces on orthodox semigroups, Glasgow J. Math. 26 (1985), 25-30. doi: 10.1017/S0017089500005735 | Zbl 0549.20047
[009] [10] J.C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. XII (3) (1971), 222-341. doi: 10.1017/S1446788700009794 | Zbl 0234.20037
[010] [11] J.C. Meakin, Congruences on orthodox semigroups II, J. Austral. Math. Soc. XIII (3) (1972), 259-266. doi: 10.1017/S1446788700013665 | Zbl 0265.20056
[011] [12] J.E. Milles, Certain congruences on orthodox semigroups, Pacific J. Math. 64 (1) (1976), 217-226. doi: 10.2140/pjm.1976.64.217
[012] [13] M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6 (1973), 113-128. doi: 10.1007/BF02389116 | Zbl 0255.20038