bi-BL-algebra
Mahdeieh Abbasloo ; Arsham Borumand Saeid
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 231-260 / Harvested from The Polish Digital Mathematics Library

In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276682
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1185,
     author = {Mahdeieh Abbasloo and Arsham Borumand Saeid},
     title = {bi-BL-algebra},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {231-260},
     zbl = {1261.03171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1185}
}
Mahdeieh Abbasloo; Arsham Borumand Saeid. bi-BL-algebra. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 231-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1185/

[000] [1] A. Borumand Saeid, A. Ahadpanah and L. Torkzadeh, Smarandache BL-algebra, J. Applied Logic 8 (2010), 253-261. doi: 10.1016/j.jal.2010.06.001

[001] [2] A. Borumand Saeid and S. Motamed, Normal filters in BL-algebras, World Applied Sci. J. 7 (Special Issue Appl. Math.), (2009), 70-76. | Zbl 1188.03047

[002] [3] A. Borumand Saeid and S. Motamed, Some Results in BL-algebras, Math. Logic Quat 55 (6) (2009), 649-658. doi: 10.1002/malq.200910025 | Zbl 1188.03047

[003] [4] D. Busneag and D. Piciu, On the lattice of deductive systems of a BL-algebra, Central Eur. J Math. 1 (2) (2003), 221-238. doi: 10.2478/BF02476010 | Zbl 1040.03047

[004] [5] R. Cingnoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9480-6

[005] [6] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of continuous t-norm and their residua, Soft Comput 4 (2000), 106-112. doi: 10.1007/s005000000044

[006] [7] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebra: Part I, Mult val logic 8 (5-6) (2002), 673-714. | Zbl 1028.06007

[007] [8] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Arch-Math. Logic 42 (2003), 737-761. doi: 10.1007/s00153-003-0178-y | Zbl 1040.03048

[008] [9] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998. http://dx.doi.org/10.1007/978-94-011-5300-3 | Zbl 0937.03030

[009] [10] M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of filters in BL-algebras, Soft Computing 10 (2006), 657-664. doi: 10.1007/s00500-005-0534-4 | Zbl 1103.03062

[010] [11] A. Iorgulescu, Algebras of Logic as BCK-algebras, Academy of Economic Studies, Bucharest, Editura 2008. | Zbl 1172.03038

[011] [12] A. Iorgulescu, Classes of BCK-algebra-part III, Preprint series of the Institute of Mathematics of the Romanian Academy, preprint nr, 3/2004 (2004), 1-37.

[012] [13] M. Kondo and W.A. Dudck, Filter theory of BL-algebras, Soft Computing 12 (2007), 419-423.

[013] [14] R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci., Delhi 17 (1) (1998), 119-121. | Zbl 0914.08003

[014] [15] D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007. | Zbl 1153.06005

[015] [16] E. Turunen, BL-algebras of basic fuzzy logic, Mathware and soft computing 6 (1999), 49-61. | Zbl 0962.03020

[016] [17] E. Turunen, Boolean deductive systems of BL-algebras, Arch Math. Logic 40 (2001), 467-473. doi: 10.1007/s001530100088 | Zbl 1030.03048

[017] [18] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag, 1999. | Zbl 0940.03029

[018] [19] W.B. Vasantha Kandasamy, Bialgebraic structures and Smaranche bialgebraic structures, American Research Press, 2003. | Zbl 1054.20054