The class of p-semisimple pseudo-BCI-algebras and the class of branchwise commutative pseudo-BCI-algebras are studied. It is proved that they form varieties. Some congruence properties of these varieties are displayed.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1184, author = {Grzegorz Dymek}, title = {On two classes of pseudo-BCI-algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {31}, year = {2011}, pages = {217-174}, zbl = {1258.06014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1184} }
Grzegorz Dymek. On two classes of pseudo-BCI-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 217-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1184/
[000] [1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190. | Zbl 1149.06010
[001] [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, submitted. | Zbl 1294.06021
[002] [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, submitted.
[003] [4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Val. Log. Soft Comput., to appear.
[004] [5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, submitted.
[005] [6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114. | Zbl 0986.06018
[006] [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
[007] [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961-968. | Zbl 0985.06007
[008] [9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
[009] [10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Academy 42 (1966), 26-29. doi: 10.3792/pja/1195522171 | Zbl 0207.29304
[010] [11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46. | Zbl 1119.03068
[011] [12] K.J. Lee and C.H. Park, Some ideals of pseudo-BCI algebras, J. Appl. Math. & Informatics 27 (2009), 217-231.
[012] [13] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213. | Zbl 0518.06014