Polynomials of multipartitional type and inverse relations
Miloud Mihoubi ; Hacène Belbachir
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 185-199 / Harvested from The Polish Digital Mathematics Library

Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276555
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1182,
     author = {Miloud Mihoubi and Hac\`ene Belbachir},
     title = {Polynomials of multipartitional type and inverse relations},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {185-199},
     zbl = {1255.05023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1182}
}
Miloud Mihoubi; Hacène Belbachir. Polynomials of multipartitional type and inverse relations. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 185-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1182/

[000] [1] H. Belbachir, S. Bouroubi and A. Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Inform. 35 (2008), 21-30. | Zbl 1199.11047

[001] [2] H. Belbachir, Determining the mode for convolution powers of discrete uniform distribution, Probability in the Engineering and Informational Sciences 25 (2011), 469-475. doi: 10.1017/S0269964811000131 | Zbl 1241.60007

[002] [3] E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934), 258-277. doi: 10.2307/1968431 | Zbl 60.0295.01

[003] [4] W.S. Chou, L.C. Hsu and P.J.S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math. 190 (2006), 151-169. doi: 10.1016/j.cam.2004.12.041 | Zbl 1084.05009

[004] [5]L. Comtet, Advanced Combinatorics (Dordrecht, Netherlands, Reidel, 1974). doi: 10.1007/978-94-010-2196-8

[005] [6] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008), 2450-2459. doi: 10.1016/j.disc.2007.05.010 | Zbl 1147.05006

[006] [7] M. Mihoubi, Bell polynomials and inverse relations, J. Integer Seq. 13 (2010), Article 10.4.5.

[007] [8] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials, to appear in Ars Combin., Preprint available at online: http://arxiv.org/abs/0806.3468v1.

[008] [9] J. Riordan, Combinatorial Identities (Huntington, NewYork, 1979). | Zbl 0194.00502

[009] [10] S. Roman, The Umbral Calculus (New York: Academic Press, 1984). | Zbl 0536.33001