L-zero-divisor graphs of direct products of L-commutative rings
S. Ebrahimi Atani ; M. Shajari Kohan
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 159-174 / Harvested from The Polish Digital Mathematics Library

L-zero-divisor graphs of L-commutative rings have been introduced and studied in [5]. Here we consider L-zero-divisor graphs of a finite direct product of L-commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the L-ziro-divisor graph of a L-ring when extending to a finite direct product of L-commutative rings.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276609
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1180,
     author = {S. Ebrahimi Atani and M. Shajari Kohan},
     title = {L-zero-divisor graphs of direct products of L-commutative rings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {159-174},
     zbl = {1255.05095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1180}
}
S. Ebrahimi Atani; M. Shajari Kohan. L-zero-divisor graphs of direct products of L-commutative rings. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 159-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1180/

[000] [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 | Zbl 0941.05062

[001] [2] M. Axtell, J. Stickles and J. Warfel, Zero-divisor graphs of direct products of commutative rings, Houston J. of Math. 22 (2006), 985-994. | Zbl 1110.13004

[002] [3] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds), Springer-Verlag, New York, 2.11, 23-45. | Zbl 1225.13002

[003] [4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. doi: 10.1016/0021-8693(88)90202-5

[004] [5] S. Ebrahimi Atani and M. Shajari Kohan, On L-ideal-based L-zero-divisor graphs, Discuss. Math. General Algebra and Applications, to appear. | Zbl 1255.05094

[005] [6] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174. | Zbl 0145.24404

[006] [7] W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems, 11 (1983), 31-41. | Zbl 0522.06013

[007] [8] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0

[008] [9] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.

[009] [10] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502 | Zbl 1087.13500

[010] [11] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517. | Zbl 0194.05501

[011] [12] A. Rosenfeld, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.

[012] [13] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in: Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.

[013] [14] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X | Zbl 0139.24606