Distributive lattices of t-k-Archimedean semirings
Tapas Kumar Mondal
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 147-158 / Harvested from The Polish Digital Mathematics Library

A semiring S in 𝕊𝕃⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276484
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1179,
     author = {Tapas Kumar Mondal},
     title = {Distributive lattices of t-k-Archimedean semirings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {147-158},
     zbl = {1254.16042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1179}
}
Tapas Kumar Mondal. Distributive lattices of t-k-Archimedean semirings. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 147-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1179/

[000] [1] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, accepted for publication in Discuss. Math. General Algebra and Applications 31 (2011), 5-25. | Zbl 1254.16040

[001] [2] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum 80 (2010), 293-301. doi: 10.1007/s00233-009-9205-6 | Zbl 1205.16039

[002] [3] S. Bogdanovic and M. Ciric, Semilattice of Archimedean semigroups and completely π-regular semigroups I (survey article), Filomat(nis) 7 (1993), 1-40. | Zbl 0848.20052

[003] [4] S. Bogdanovic and M. Ciric, Chains of Archimedean semigroups (Semiprimary semigroups), Indian J. Pure and Appl. Math. 25 (1994), 229-235. | Zbl 0801.20045

[004] [5] M. Ciric and S. Bogdanovic, Semilattice decompositions of semigroups, Semigroup Forum (1996), 119-132. doi: 10.1007/BF02574089

[005] [6] A.H. Clifford, Semigroups admitting relative inverses, Annals of Math. 42 (1941), 1037-1049. doi: 10.2307/1968781 | Zbl 0063.00920

[006] [7] F. Kmet, Radicals and their left ideal analogues in a semigroup, Math. Slovaca 38 (1988), 139-145. | Zbl 0643.20042

[007] [8] M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Zeitschr. 85 (1964), 68-82. doi: 10.1007/BF01114879 | Zbl 0124.25801

[008] [9] M.S. Putcha, Semilattice decomposition of semigroups, Semigroup Forum 6 (1973), 12-34. doi: 10.1007/BF02389104

[009] [10] T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777-780. doi: 10.3792/pja/1195522562 | Zbl 0135.04001

[010] [11] T. Tamura, On Putcha's theorem concerning semilattice of archimedean semigroups, Semigroup Forum 4 (1972), 83-86. doi: 10.1007/BF02570773 | Zbl 0256.20075

[011] [12] T. Tamura, Note on the greatest semilattice decomposition of semigroups, Semigroup Forum 4 (1972), 255-261. doi: 10.1007/BF02570795 | Zbl 0261.20058

[012] [13] T. Tamura and N. Kimura, On decomposition of a commutative semigroup, Kodai Math. Sem. Rep. 4 (1954), 109-112. doi: 10.2996/kmj/1138843534 | Zbl 0058.01503