On L-ideal-based L-zero-divisor graphs
S. Ebrahimi Atani ; M. Shajari Kohan
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 127-145 / Harvested from The Polish Digital Mathematics Library

In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276474
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1178,
     author = {S. Ebrahimi Atani and M. Shajari Kohan},
     title = {On L-ideal-based L-zero-divisor graphs},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {127-145},
     zbl = {1255.05094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1178}
}
S. Ebrahimi Atani; M. Shajari Kohan. On L-ideal-based L-zero-divisor graphs. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 127-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1178/

[000] [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 | Zbl 0941.05062

[001] [2] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure App. Algebra 210 (2) (2007), 543-550. doi: 10.1016/j.jpaa.2006.10.007 | Zbl 1119.13005

[002] [3] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092. doi: 10.1080/00927870802110888 | Zbl 1152.13001

[003] [4] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (2005), 2043-2050. doi:10.1081/AGB-200063357 | Zbl 1088.13006

[004] [5] D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero-divisors, Rocky Mountain J. of Math. 26 (1996), 439-480. doi: 10.1216/rmjm/1181072068 | Zbl 0865.13001

[005] [6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5

[006] [7] S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glasnik Matematicki 44 (64) (2009), 141-153. doi: 10.3336/gm.44.1.07 | Zbl 1181.16041

[007] [8] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174. | Zbl 0145.24404

[008] [9] K.H. Lee and J.N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998), 105-110. doi: 10.1016/S0165-0114(97)00012-2 | Zbl 0943.13003

[009] [10] W.J. Liu, Operation on fuzzy ideals, Fuzzy Sets and Systems 11 (1983), 31-41. | Zbl 0522.06013

[010] [11] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0

[011] [12] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.

[012] [13] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502 | Zbl 1087.13500

[013] [14] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517. | Zbl 0194.05501

[014] [15] S. Redmond, The zero-divisor graph of a non-commutative ring, International J. Commutative rings 1 (4) (2002), 203-211. | Zbl 1195.16038

[015] [16] S. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103 | Zbl 1105.13007

[016] [17] A. Rosenfeld and Fuzzy graphs, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.

[017] [18] F.I. Sidky, On radicals of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119 (2001), 419-425. doi: 10.1016/S0165-0114(99)00101-3 | Zbl 1023.13009

[018] [19] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.

[019] [20] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X | Zbl 0139.24606