We define the order-congruence distributivity at 0 and order- congruence n-distributivity at 0 of ordered algebras with a nullary operation 0. These notions are generalizations of congruence distributivity and congruence n-distributivity. We prove that a class of ordered algebras with a nullary operation 0 closed under taking subalgebras and direct products is order-congruence distributive at 0 iff it is order-congruence n-distributive at 0. We also characterize such classes by a Mal'tsev condition.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1174, author = {Krisztina Balog and Benedek Skublics}, title = {On congruence distributivity of ordered algebras with constants}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {31}, year = {2011}, pages = {47-59}, zbl = {1271.08004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1174} }
Krisztina Balog; Benedek Skublics. On congruence distributivity of ordered algebras with constants. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 47-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1174/
[000] [1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc. 31 (1935), 433-454. doi: 10.1017/S0305004100013463 | Zbl 0013.00105
[001] [2] S.L. Bloom, Varieties of ordered algebras, J. Comput. System Sci. 13 (1976), 200-212. doi: 10.1016/S0022-0000(76)80030-X
[002] [3] I. Chajda, Congruence distributivity in varieties with constants, Arch. Math. (Brno) 22 (1986), 121-124. | Zbl 0615.08005
[003] [4] G. Czédli, On the lattice of congruence varieties of locally equational classes, Acta Sci. Math. (Szeged) 41 (1979), 39-45. | Zbl 0386.08008
[004] [5] G. Czédli, Notes on congruence implication, Archivum Math. (Brno) 27 (1991), 149-153. | Zbl 0760.08002
[005] [6] G. Czédli and E.K. Horváth, All congruence lattice identities implying modularity have Mal'tsev conditions, Algebra Universalis 50 (2003), 69-74. doi: 10.1007/s00012-003-1818-0 | Zbl 1091.08007
[006] [7] G. Czédli, E.K. Horváth, P. Lipparini, Optimal Mal'tsev conditions for congruence modular varieties, Algebra Universalis 53 (2005), 267-279. doi: 10.1007/s00012-005-1893-5 | Zbl 1079.08005
[007] [8] G. Czédli and A. Lenkehegyi, On congruence n-distributivity of ordered algebras, Acta Math. (Hung.) 41 (1983), 17-26. doi: 10.1007/BF01994057 | Zbl 0541.06013
[008] [9] R. Freese and B. Jónsson, Congruence modularity implies the Arguesian identity, Algebra Universalis 6 (2) (1976), 225-228. doi: 10.1007/BF02485830 | Zbl 0354.08008
[009] [10] R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge 1987. | Zbl 0636.08001
[010] [11] G. Grätzer, Universal Algebra, Springer-Verlag (Berlin-Heidelberg-New York 1979).
[011] [12] C. Herrmann and A.P. Huhn, Lattices of normal subgroups which are generated by frames, Lattice Theory, Colloq. Math. Soc. J. Bolyai, North-Holland 14 (1976), 97-136.
[012] [13] A.P. Huhn, Schwach distributive Verbände I, Acta Sci. Math. (Szeged) 33 (1972), 297-305. | Zbl 0269.06006
[013] [14] A.P. Huhn, Two notes on n-distributive lattices, Lattice Theory, Colloq. Math. Soc. J. Bolyai, North-Holland 14 (1976), 137-147.
[014] [15] A.P. Huhn, n-distributivity and some questions of the equational theory of lattices, Contributions to Universal Algebra, Colloq. Math. Soc. J. Bolyai North-Holland 17 (1977), 177-178.
[015] [16] B. Jónsson, Congruence varieties, Algebra Universalis 10 (1980), 355-394. doi: 10.1007/BF02482916 | Zbl 0438.08003
[016] [17] J.B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Univ. 4 (1974), 78-88. | Zbl 0299.08002