Bi-ideals in k-regular and intra k-regular semirings
Anjan K. Bhuniya ; Kanchan Jana
Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011), p. 5-23 / Harvested from The Polish Digital Mathematics Library

Here we introduce the k-bi-ideals in semirings and the intra k-regular semirings. An intra k-regular semiring S is a semiring whose additive reduct is a semilattice and for each a ∈ S there exists x ∈ S such that a + xa²x = xa²x. Also it is a semiring in which every k-ideal is semiprime. Our aim in this article is to characterize both the k-regular semirings and intra k-regular semirings using of k-bi-ideals.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:276570
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1172,
     author = {Anjan K. Bhuniya and Kanchan Jana},
     title = {Bi-ideals in k-regular and intra k-regular semirings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {31},
     year = {2011},
     pages = {5-23},
     zbl = {1254.16040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1172}
}
Anjan K. Bhuniya; Kanchan Jana. Bi-ideals in k-regular and intra k-regular semirings. Discussiones Mathematicae - General Algebra and Applications, Tome 31 (2011) pp. 5-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1172/

[000] [1] M.R. Adhikari, M.K. Sen and H.J. Weinert, On k-regular semirings, Bull.Cal.Math.Soc. 88 (1996), 141-144. | Zbl 0886.16032

[001] [2] S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163-170. doi: 10.1073/pnas.37.3.163 | Zbl 0042.03201

[002] [3] R. Chinram and K. Tinpun, A note on minimal bi-ideals in ordered Γ-semigroups, International Math. Forum 4 (1) (2009), 1-5. | Zbl 1179.06006

[003] [4] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952), 624-625.

[004] [5] M. Henricksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices (1958), 321.

[005] [6] A. Iampan, On bi-ideals of semigroups, Lobachevskii J. Math 29 (2) (2008), 68-72. doi: 10.1134/S1995080208020042 | Zbl 1165.20321

[006] [7] K.M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecan 16 (1969), 179-185. | Zbl 0224.20055

[007] [8] K.M. Kapp, Bi-ideals in associative rings and semigroups, Acta. Sci. Math. 33 (1972), 307-314. | Zbl 0247.20069

[008] [9] N. Kehayopulu, J.S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sci. 112 (4) (2002), 4353-4354. doi: 10.1023/A:1020347003781

[009] [10] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proceedings of the International Conference on Algebra and its Applicatipns (2002), 30-46. | Zbl 1071.20515

[010] [11] S. Lajos, On (m, n)-ideals of semigroups, Abstract of Second Hunger. Math. Congress I (1960), 42-44.

[011] [12] S. Lajos, On the bi-ideals in semigroups, Proc. Japan. Acad. 45 (1969), 710-712. doi: 10.3792/pja/1195520625 | Zbl 0199.33702

[012] [13] S. Lajos, On generalized bi-ideals in semigroups, Coll. Math. Soc. Janos Bolyai, Algebraic Theory of semigroups (G. Polak, Ed.), North-Holland 20 (1979), 335-340.

[013] [14] S. Lajos and F. Szaaz, Bi-ideals in associative rings, Acta. Sci. Math. 32 (1971), 185-193. | Zbl 0217.34201

[014] [15] S. Li and Y. He, On semigroups whose bi-ideals are strongly prime, International J. Algebra 1 (6) (2007), 263-268. | Zbl 1127.20039

[015] [16] M. M. Miccoli, Bi-ideals in regular semigroups and orthogroups, Acta. Math. Hung. 47 (1-2) (1986), 3-6. doi: 10.1007/BF01949118

[016] [17] J.V. Neumann, On regular rings, Proc. Nat. Acad. Sci. USA 22 (1936), 707-713. doi: 10.1073/pnas.22.12.707 | Zbl 0015.38802

[017] [18] M.K. Sen and A.K. Bhuniya, Completely k-regular semirings, Bull. Cal. Math. Soc. 97 (2005), 455-466. | Zbl 1092.16028

[018] [19] M.K. Sen and A.K. Bhuniya, On Additive Idempotent k-Clifford Semirings, Southeast Asian Bulletin of Mathematics 32 (2008), 1149-1159. | Zbl 1199.16103

[019] [20] M.K. Sen and A.K. Bhuniya, On semirings whose additive reduct is semilattice, Communicated. | Zbl 1248.16038

[020] [21] X.Z. Xu and J.Y. Ma, A note on minimal bi-ideals in ordered semigroups, SEA Bull. Math. 27 (2003), 149-154. | Zbl 1053.06011