Congruences on semilattices with section antitone involutions
Ivan Chajda
Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010), p. 207-215 / Harvested from The Polish Digital Mathematics Library

We deal with congruences on semilattices with section antitone involution which rise e.g., as implication reducts of Boolean algebras, MV-algebras or basic algebras and which are included among implication algebras, orthoimplication algebras etc. We characterize congruences by their kernels which coincide with semilattice filters satisfying certain natural conditions. We prove that these algebras are congruence distributive and 3-permutable.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:276569
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1170,
     author = {Ivan Chajda},
     title = {Congruences on semilattices with section antitone involutions},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {30},
     year = {2010},
     pages = {207-215},
     zbl = {1243.06004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1170}
}
Ivan Chajda. Congruences on semilattices with section antitone involutions. Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010) pp. 207-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1170/

[000] [1] J.C. Abbott, Semi-boolean algebras, Matem. Vestnik 4 (1967), 177-198. | Zbl 0153.02704

[001] [2] J.C. Abbott, Orthoimplication algebras, Studia Logica 35 (1976), 173-177. doi: 10.1007/BF02120879 | Zbl 0331.02036

[002] [3] I. Chajda, Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Univ. Carol. 44 (2003), 577-585. | Zbl 1101.06003

[003] [4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag (Lemgo, Germany), 220pp., 2003, ISBN 3-88538-226-1. | Zbl 1014.08001

[004] [5] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 228pp., 2007, ISBN 978-3-88538-230-0.

[005] [6] I. Chajda, R. Halaš and J. Kühr, Implication in MV-algebras, Algebra Universalis 53 (2005), 377-382. doi: 10.1007/s00012-004-1862-4 | Zbl 1097.06011