A note on good pseudo BL-algebras
Magdalena Wojciechowska-Rysiawa
Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010), p. 193-205 / Harvested from The Polish Digital Mathematics Library

Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:276670
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1169,
     author = {Magdalena Wojciechowska-Rysiawa},
     title = {A note on good pseudo BL-algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {30},
     year = {2010},
     pages = {193-205},
     zbl = {1244.03172},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1169}
}
Magdalena Wojciechowska-Rysiawa. A note on good pseudo BL-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010) pp. 193-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1169/

[000] [1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9 | Zbl 0084.00704

[001] [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673-714. | Zbl 1028.06007

[002] [3] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717-750. | Zbl 1028.06008

[003] [4] G. Dymek, Bipartite pseudo MV-algebras, Discussiones Math., General Algebra and Appl. 26 (2006), 183-197. | Zbl 1130.06006

[004] [5] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 117-126. | Zbl 1177.06016

[005] [6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, 'The Proceedings of the Fourth International Symposium on Economic Informatics', Bucharest, Romania, May (1999), 961-968. | Zbl 0985.06007

[006] [7] G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a noncommutative extension of BL-algebras, 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia (2000), 90-92.

[007] [8] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127-153. doi: 10.1017/S144678870000851X | Zbl 1016.03069

[008] [9] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam 1998. doi: 10.1007/978-94-011-5300-3 | Zbl 0937.03030

[009] [10] P. Hájek, Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation 13 (2003), 469-479. doi: 10.1093/logcom/13.4.469 | Zbl 1036.03018

[010] [11] P. Hájek, Observations on non-commutative fuzzy logic, Soft Computing 8 (2003), 38-43. doi: 10.1007/s00500-002-0246-y | Zbl 1075.03009

[011] [12] J. Rachůnek, A non-commutative generalisations of MV-algebras, Math. Slovaca 52 (2002), 255-273. | Zbl 1012.06012

[012] [13] A. Walendziak and M. Wojciechowska, Bipartite pseudo BL-algebras, Demonstratio Mathematica XLIII (3) (2010), 487-496. | Zbl 1225.03094