It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1166, author = {S\'andor Szab\'o}, title = {Factoring an odd abelian group by lacunary cyclic subsets}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {30}, year = {2010}, pages = {137-146}, zbl = {1231.20050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1166} }
Sándor Szabó. Factoring an odd abelian group by lacunary cyclic subsets. Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010) pp. 137-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1166/
[000] [1] K. Corrádi and S. Szabó, A Hajós type result on factoring finite abelian groups by subsets, Mathematica Pannonica 5 (1994), 275-280. | Zbl 0831.20069
[001] [2] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Zeit. 47 (1942), 427-467. doi: 10.1007/BF01180974 | Zbl 0025.25401
[002] [3] L. Rédei, Die neue Theorie der Endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), 329-373. doi: 10.1007/BF01904843 | Zbl 0138.26001
[003] [4] A.D. Sands, A note on distorted cyclic subsets, Mathematica Pannonica 20 (2009), 123-127. | Zbl 1249.20049
[004] [5] S. Szabó and A.D. Sands, Factoring Groups into Subsets, Chapman and Hall, CRC, Taylor and Francis Group, Boca Raton 2009. | Zbl 1167.20030