A reduction theorem for ring varieties whose subvariety lattice is distributive
Mikhail V. Volkov
Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010), p. 119-132 / Harvested from The Polish Digital Mathematics Library

We prove a theorem (for arbitrary ring varieties and, in a stronger form, for varieties of associative rings) which basically reduces the problem of a description of varieties with distributive subvariety lattice to the case of algebras over a finite prime field.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:276650
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1165,
     author = {Mikhail V. Volkov},
     title = {A reduction theorem for ring varieties whose subvariety lattice is distributive},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {30},
     year = {2010},
     pages = {119-132},
     zbl = {1242.08003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1165}
}
Mikhail V. Volkov. A reduction theorem for ring varieties whose subvariety lattice is distributive. Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010) pp. 119-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1165/

[000] [1] D.S. Ananichev, Almost distributive varieties of Lie rings, Mat. Sbornik 186 (4) (1995), 3-20 [Russian; Engl. translation Sbornik: Math. 186 (4) (1995), 465-483]. | Zbl 0841.17006

[001] [2] V.A. Artamonov, On chain varieties of linear algebras, Trans. Am. Math. Soc. 221 (1976), 323-338. doi: 10.1090/S0002-9947-1976-0409572-5 | Zbl 0337.17001

[002] [3] V.A. Artamonov, Lattices of varieties of linear algebras, Uspekhi Mat. Nauk 33 (2) (1978) 135-167 [Russian; Engl. translation Russ. Math. Surv. 33 (2) (1978), 155-193].

[003] [4] G. Grätzer, General lattice theory, 2nd ed., Birkhäuser Verlag, Basel 1998. | Zbl 0909.06002

[004] [5] A.I. Mal'tsev, On a multiplication of classes of algebraic systems, Sib. Mat. Zh. 8 (2) (1967), 346-365 [Russian; Engl. translation Sib. Math. J. 8 (1967), 254-267]. doi: 10.1007/BF02302476

[005] [6] Yu.N. Mal'tsev, On distributive varieties of associative algebras, in Investigations in the Theory of Rings, Algebras and Modules (Mat. Issledovaniya, Kishinev 76) (1984), 73-98 [Russian]. | Zbl 0559.16011

[006] [7] M.V. Volkov, Lattices of varieties of algebras, Mat. Sbornik 109 (1) (1979) 60-79 [Russian; Engl. translation Math. USSR, Sbornik 37 (1) (1980), 53-69]. | Zbl 0411.17008

[007] [8] M.V. Volkov, Periodic varieties of associative rings, Izvestiya VUZ. Matematika no.8 (1979) 3-13 [Russian; Engl. translation Soviet Math., Izv. VUZ 23 (8) (1979), 1-12].

[008] [9] M.V. Volkov, Identities in lattices of ring varieties, Algebra Universalis 23 (1986), 32-43. doi: 10.1007/BF01190909 | Zbl 0607.17001

[009] [10] M.V. Volkov and A.G. Geĭn, Identities of almost nilpotent Lie rings, Mat. Sbornik 118 (1) (1982), 132-142 [Russian; Engl. translation Math. USSR, Sbornik 46 (1) (1983), 133-142]. | Zbl 0494.17009

[010] [11] E.I. Zel'manov, On Engel Lie algebras, Sibirsk. Mat. Zh 26 (5) (1988), 112-117 [Russian; Engl. translation Siberian Math. J. 29 (5) (1988), 777-781].

[011] [12] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov and A.I. Shirshov, Rings that are nearly associative, Academic Press, New York 1982. | Zbl 0487.17001