On monadic quantale algebras: basic properties and representation theorems
Sergey A. Solovyov
Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010), p. 91-118 / Harvested from The Polish Digital Mathematics Library

Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new structures.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:276697
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1164,
     author = {Sergey A. Solovyov},
     title = {On monadic quantale algebras: basic properties and representation theorems},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {30},
     year = {2010},
     pages = {91-118},
     zbl = {1220.03052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1164}
}
Sergey A. Solovyov. On monadic quantale algebras: basic properties and representation theorems. Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010) pp. 91-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1164/

[000] [1] M. Abad and J. Varela, Free Q-distributive lattices from meet semilattices, Discrete Math. 224 (2000), 1-14. doi: 10.1016/S0012-365X(00)00106-0 | Zbl 0963.06010

[001] [2] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Math. Struct. Comput. Sci. 3 (1993), 161-227. doi: 10.1017/S0960129500000189 | Zbl 0823.06011

[002] [3] J. Adámek, H. Herrlich, and G.E. Strecker, Abstract and Concrete Categories: the Joy of Cats, Repr. Theory Appl. Categ. 17 (2006), 1-507. | Zbl 1113.18001

[003] [4] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, 2nd ed., Springer-Verlag 1992. doi: 10.1007/978-1-4612-4418-9 | Zbl 0765.16001

[004] [5] L.P. Belluce, R. Grigolia, and A. Lettieri, Representations of monadic MV-algebras., Stud. Log. 81 (1) (2005), 123-144. doi: 10.1007/s11225-005-2805-6 | Zbl 1093.06008

[005] [6] G. Bezhanishvili, Varieties of monadic Heyting algebras II: Duality theory, Stud. Log. 62 (1) (1999), 21-48. doi: 10.1023/A:1005173628262 | Zbl 0973.06010

[006] [7] G. Bezhanishvili and J. Harding, Functional monadic Heyting algebras, Algebra Univers. 48 (1) (2002), 1-10. doi: 10.1007/s00012-002-8202-3 | Zbl 1062.06017

[007] [8] F. Borceux and G. van den Bossche, An essay on noncommutative topology, Topology Appl. 31 (3) (1989), 203-223. doi: 10.1016/0166-8641(89)90018-7 | Zbl 0683.54007

[008] [9] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Research and Exposition in Mathematics, vol. 30, Heldermann Verlag 2007.

[009] [10] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. doi: 10.1016/0022-247X(68)90057-7 | Zbl 0167.51001

[010] [11] R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (3) (1991), 183-197. doi: 10.1016/0012-365X(91)90312-P

[011] [12] R. Cignoli, S. Lafalce, and A. Petrovich, Remarks on Priestley duality for distributive lattices, Order 8 (3) (1991), 299-315. doi: 10.1007/BF00383451 | Zbl 0754.06006

[012] [13] J. Cīrulis, Quantifiers on multiplicative semilattices, Contr. Gen. Alg. 18 (2008), 31-46. | Zbl 1147.03035

[013] [14] C. Davis, Modal operators, equivalence relations, and projective algebras, Am. J. Math. 76 (1954), 747-762. doi: 10.2307/2372649 | Zbl 0057.02303

[014] [15] J.T. Denniston, A. Melton, and S.E. Rodabaugh, Lattice-valued topological systems, Abstracts of the 30th Linz Seminar on Fuzzy Set Theory (U. Bodenhofer, B. De Baets, E.P. Klement, and S. Saminger-Platz, eds.), Johannes Kepler Universität, Linz, 2009, pp. 24-31.

[015] [16] J.T. Denniston and S.E. Rodabaugh, Functorial relationships between lattice-valued topology and topological systems, to appear in Quaest. Math. | Zbl 1220.06001

[016] [17] A. Di Nola and R. Grigolia, On monadic MV-algebras, Ann. Pure Appl. Logic 128 (1-3) (2004), 125-139. doi: 10.1016/j.apal.2003.11.031 | Zbl 1052.06010

[017] [18] G. Georgescu and I. Leuştean, A representation theorem for monadic Pavelka algebras, J. UCS 6 (1) (2000), 105-111. | Zbl 0963.03088

[018] [19] R. Giles and H. Kummer, A non-commutative generalization of topology, Indiana Univ. Math. J. 21 (1971), 91-102. doi: 10.1512/iumj.1972.21.21008 | Zbl 0219.54003

[019] [20] J.-Y. Girard, Linear logic, Theor. Comput. Sci. 50 (1987), 1-102. doi: 10.1016/0304-3975(87)90045-4

[020] [21] J.A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734-742. | Zbl 0278.54003

[021] [22] R. Goldblatt, Topoi. The Categorical Analysis of Logic. Rev. Ed., Dover Publications 2006.

[022] [23] P. Halmos, Algebraic logic I: Monadic Boolean algebras, Compos. Math. 12 (1955), 217-249. | Zbl 0087.24505

[023] [24] H. Herrlich and G.E. Strecker, Category Theory, 3rd ed., Sig. Ser. Pure Math., vol. 1, Heldermann Verlag 2007. | Zbl 1125.18300

[024] [25] U. Höhle, M-valued Sets and Sheaves over Integral Commutative CL-Monoids, Applications of category theory to fuzzy subsets (S.E. Rodabaugh, E.P. Klement, and U. Höhle, eds.), Theory and Decision Library: Series B: Mathematical and Statistical Methods, Kluwer Academic Publishers, 14 (1992), 34-72.

[025] [26] M.F. Janowitz, Quantifiers and orthomodular lattices, Pac. J. Math. 13 (1963), 1241-1249. | Zbl 0144.25303

[026] [27] P.T. Johnstone, Stone Spaces, Cambridge University Press 1982.

[027] [28] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Am. Math. Soc. 309 (1984), 1-71. | Zbl 0541.18002

[028] [29] D. Kruml and J. Paseka, Algebraic and Categorical Aspects of Quantales, Handbook of Algebra (M. Hazewinkel, ed.), Elsevier 5 (2008), 323-362. | Zbl 1219.06016

[029] [30] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621-633. | Zbl 0342.54003

[030] [31] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag 1998.

[031] [32] A. Monteiro and O. Varsavsky, Algebres de heyting monadiques, Actas de las X Jornadas de la Unión Mat. Argentina (1957), 52-62. | Zbl 0319.02054

[032] [33] C.J. Mulvey, &, Rend. Circ. Mat. Palermo II (12) (1986), 99-104.

[033] [34] C.J. Mulvey and J.W. Pelletier, A quantisation of the calculus of relations, Canad. Math. Soc. Conf. Proc. 13 (1992), 345-360. | Zbl 0793.06008

[034] [35] C.J. Mulvey and J.W. Pelletier, On the quantisation of spaces, J. Pure Appl. Algebra 175 (1-3) (2002), 289-325. | Zbl 1026.06018

[035] [36] J. Paseka, Quantale Modules, Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University Brno, June 1999.

[036] [37] J. Paseka and J. Rosický, Quantales, Current Research in Operational Quantum Logic: Algebras, Categories, Languages (B. Coecke, D. Moore, and A. Wilce, eds.), Fundamental Theories of Physics, Kluwer Academic Publishers 111 (2000), 245-261.

[037] [38] A. Petrovich, Distributive lattices with an operator, Stud. Log. 56 (1-2) (1996), 205-224. | Zbl 0854.06016

[038] [39] P. Resende, Quantales and Observational Semantics, Current Research in Operational Quantum Logic: Algebras, Categories and Languages (B. Coecke, D. Moore, and A. Wilce, eds.), Dordrecht: Kluwer Academic Publishers. Fundam. Theor. Phys. 111 (2000), 263-288. | Zbl 0963.81003

[039] [40] L. Román, A characterization of quantic quantifiers in orthomodular lattices, Theory Appl. Categ. 16 (2006), 206-217. | Zbl 1108.03059

[040] [41] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. | Zbl 0194.05501

[041] [42] K.I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical 1990. | Zbl 0703.06007

[042] [43] K.I. Rosenthal, Free quantaloids, J. Pure Appl. Algebra 72 (1) (1991), 67-82.

[043] [44] K.I. Rosenthal, The Theory of Quantaloids, Pitman Research Notes in Mathematics Series 348, Addison Wesley Longman 1996. | Zbl 0845.18003

[044] [45] J.D. Rutledge, A Preliminary Investigation of the Infinitely Many-Valued Predicate Calculus, Ph.D. thesis, Cornell University 1959.

[045] [46] S. Solovjovs, From quantale algebroids to topological spaces, Abstracts of the 29th Linz Seminar on Fuzzy Set Theory (E.P. Klement, S.E. Rodabaugh, and L.N. Stout, eds.), Johannes Kepler Universität, Linz, 2008, pp. 98-101.

[046] [47] S. Solovyov, From quantale algebroids to topological spaces: fixed- and variable-basis approaches, Fuzzy Sets Syst. 161 (2010), 1270-1287. | Zbl 1193.54010

[047] [48] S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, to appear in Soft Comput. | Zbl 1197.54018

[048] [49] S. Solovyov, On the category Q- Mod, Algebra Univers. 58 (2008), 35-58. | Zbl 1145.06008

[049] [50] S. Solovyov, A representation theorem for quantale algebras, Contr. Gen. Alg. 18 (2008), 189-198. | Zbl 1147.06010

[050] [51] I. Uļjane and A.P. Šostak, On a category of L-valued equalities on L-sets, J. Electr. Eng. 55 (12/S) (2004), 60-63. | Zbl 1070.03035

[051] [52] O. Varsavsky, Quantifiers and equivalence relations, Rev. Mat. Cuyana 2 (1956), 29-51.

[052] [53] S. Vickers, Topology via Logic, Cambridge University Press 1989. | Zbl 0668.54001

[053] [54] A.P. Šostak, Fuzzy functions and an extension of the category L-Top of Chang-Goguen L-topological spaces, Simon, Petr (ed.), Proceedings of the 9th Prague topological symposium, Prague, Czech Republic, August 19-25, 2001. Toronto: Topology Atlas, 271-294. | Zbl 1019.54006

[054] [55] M. Ward, The closure operators of a lattice, Ann. Math. 43 (2) (1942), 191-196. | Zbl 0063.08179

[055] [56] L.A. Zadeh, Similarity relations and fuzzy orderings, Inf. Sci. 3 (1971), 177-200. | Zbl 0218.02058