Semigroup of Contractions of Wreath Products of Metric Spaces
Bogdana Oliynyk
Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010), p. 35-43 / Harvested from The Polish Digital Mathematics Library

In this paper semigroups of contractions of metric spaces are considered. The semigroup of contractions of the wreath product of metric spaces is calculated.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:276508
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1161,
     author = {Bogdana Oliynyk},
     title = {Semigroup of Contractions of Wreath Products of Metric Spaces},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {30},
     year = {2010},
     pages = {35-43},
     zbl = {1216.54008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1161}
}
Bogdana Oliynyk. Semigroup of Contractions of Wreath Products of Metric Spaces. Discussiones Mathematicae - General Algebra and Applications, Tome 30 (2010) pp. 35-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1161/

[000] [1] F. Harary, On the group of the composition of two graphs, Duke Math J. 26 (1959), 47-51. doi: 10.1215/S0012-7094-59-02603-1

[001] [2] G. Sabidussi, The composition of graphs, Duke Math J. 26 (1959), 693-696. doi: 10.1215/S0012-7094-59-02667-5 | Zbl 0095.37802

[002] [3] I.J. Shoenberg, Metric spaces and completely monotone functions, The Annals of Mathematics 39 (4) (1938), 811-841. doi: 10.2307/1968466 | Zbl 64.0617.03

[003] [4] B. Oliynyk, Isometry groups of wreath products of metric spaces, Algebra and Discrete Mathematics 4 (2007), 123-130.

[004] [5] I.D. Meldrum, Wreath products of groups and semigroups, New York, Longman 1995. | Zbl 0833.20001

[005] [6] A. Oliinyk, On Free Semigroups of Automaton Transformations, Mathematical Notes 63 (2) (1998), 248-259. doi: 10.1007/BF02308761

[006] [7] J. Rhodes, Monoids acting on trees: Elliptic and wreath products and the holonomy theorem for arbitrary monoids with applications to infinite groups, Int. J. Algebra Comput. 1 (2) (1991), 253-279. doi: 10.1142/S0218196791000171 | Zbl 0797.20053