Two constructions of De Morgan algebras and De Morgan quasirings
Ivan Chajda ; Günther Eigenthaler
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 169-180 / Harvested from The Polish Digital Mathematics Library

De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276853
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1156,
     author = {Ivan Chajda and G\"unther Eigenthaler},
     title = {Two constructions of De Morgan algebras and De Morgan quasirings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {169-180},
     zbl = {1213.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1156}
}
Ivan Chajda; Günther Eigenthaler. Two constructions of De Morgan algebras and De Morgan quasirings. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 169-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1156/

[000] [1] Birkhoff, G.: Lattice Theory (3rd ed.), Publ. Amer. Math. Soc., Providence, R. I., 1967. | Zbl 0153.02501

[001] [2] Chajda I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl., Sitzungsberichte Abt. II, 207] (1998), 83-94. | Zbl 1040.06003

[002] [3] Chajda, I., Eigenthaler, G.: De Morgan quasirings, Contributions to General Algebra 18] (2008), Proceedings of the Klagenfurt Conference 2007, Verlag J. Heyn, Klagenfurt, 17-21. | Zbl 1155.06011

[003] [4] Chajda, I., Kühr, J.: A note on interval MV-algebras, Math. Slovaca 56] (2006), 47-52. | Zbl 1164.06010

[004] [5] Chajda, I., Länger, H.: A common generalization of ortholattices and Boolean quasirings, Demonstratio Mathem. 15] (2007), 769-774. | Zbl 1160.08003

[005] [6] Dobbertin, H.: Note on associative Newman algebras, Algebra Universalis 9] (1979), 396-397. | Zbl 0445.06010

[006] [7] Dorninger, D., Länger, H., Mączyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30] (1977), 215-232. | Zbl 0879.06005

[007] [8] Dorninger, D., Länger, H., Mączyński, M.: Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39] (2000), 1015-1026. | Zbl 0967.03055

[008] [9] Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees, Fundamenta Informaticae 84] (2008), 305-327. | Zbl 1157.03016

[009] [10] Dvurečenskij, A., Hyčko, M.: Algebras on subintervals of BL-algebras, pseudo-BL-algebras and bounded residuated Rl-monoids, Math. Slovaca 56] (2006), 135-144. | Zbl 1150.03347