De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1156, author = {Ivan Chajda and G\"unther Eigenthaler}, title = {Two constructions of De Morgan algebras and De Morgan quasirings}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {29}, year = {2009}, pages = {169-180}, zbl = {1213.06005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1156} }
Ivan Chajda; Günther Eigenthaler. Two constructions of De Morgan algebras and De Morgan quasirings. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 169-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1156/
[000] [1] Birkhoff, G.: Lattice Theory (3rd ed.), Publ. Amer. Math. Soc., Providence, R. I., 1967. | Zbl 0153.02501
[001] [2] Chajda I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl., Sitzungsberichte Abt. II, 207] (1998), 83-94. | Zbl 1040.06003
[002] [3] Chajda, I., Eigenthaler, G.: De Morgan quasirings, Contributions to General Algebra 18] (2008), Proceedings of the Klagenfurt Conference 2007, Verlag J. Heyn, Klagenfurt, 17-21. | Zbl 1155.06011
[003] [4] Chajda, I., Kühr, J.: A note on interval MV-algebras, Math. Slovaca 56] (2006), 47-52. | Zbl 1164.06010
[004] [5] Chajda, I., Länger, H.: A common generalization of ortholattices and Boolean quasirings, Demonstratio Mathem. 15] (2007), 769-774. | Zbl 1160.08003
[005] [6] Dobbertin, H.: Note on associative Newman algebras, Algebra Universalis 9] (1979), 396-397. | Zbl 0445.06010
[006] [7] Dorninger, D., Länger, H., Mączyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30] (1977), 215-232. | Zbl 0879.06005
[007] [8] Dorninger, D., Länger, H., Mączyński, M.: Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39] (2000), 1015-1026. | Zbl 0967.03055
[008] [9] Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees, Fundamenta Informaticae 84] (2008), 305-327. | Zbl 1157.03016
[009] [10] Dvurečenskij, A., Hyčko, M.: Algebras on subintervals of BL-algebras, pseudo-BL-algebras and bounded residuated Rl-monoids, Math. Slovaca 56] (2006), 135-144. | Zbl 1150.03347