The maximal subsemigroups of the ideals of some semigroups of partial injections
Ilinka Dimitrova ; Jörg Koppitz
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 153-167 / Harvested from The Polish Digital Mathematics Library

We study the structure of the ideals of the semigroup IOn of all isotone (order-preserving) partial injections as well as of the semigroup IMn of all monotone (order-preserving or order-reversing) partial injections on an n-element set. The main result is the characterization of the maximal subsemigroups of the ideals of IOn and IMn.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276858
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1155,
     author = {Ilinka Dimitrova and J\"org Koppitz},
     title = {The maximal subsemigroups of the ideals of some semigroups of partial injections},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {153-167},
     zbl = {1198.20054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1155}
}
Ilinka Dimitrova; Jörg Koppitz. The maximal subsemigroups of the ideals of some semigroups of partial injections. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 153-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1155/

[000] [1] A.Ja. Aĭzenštat, Defining Relations of the Semigroup of Endomorphisms of a Finite Linearly Ordered Set, Sibirsk. Matem. Žurn. 3 (1962), 161-169.

[001] [2] M. Delgado and V.H. Fernandes, Abelian Kernels of Some Monoids of Injective Partial Transformations and an Application, Semigroup Forum 61 (2000), 435-452. | Zbl 0966.20030

[002] [3] M. Delgado and V.H. Fernandes, Abelian Kernels of Monoids of Order-Preserving Maps and of Some of Its Extensions, Semigroup Forum 68 (2004), 335-356. | Zbl 1061.20057

[003] [4] I. Dimitrova and J. Koppitz, On the Maximal Subsemigroups of Some Transformation Semigroups, Asian-European Journal of Mathematics 1 (2) (2008), 189-202. | Zbl 1146.20045

[004] [5] I. Dimitrova and J. Koppitz, The Maximal Subsemigroups of the Semigroup of all Monotone Partial Injections, Communications in Algebra, submited. | Zbl 1287.20064

[005] [6] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: a new class of divisors, Semigroup Forum 54 (2)(1997), 230-236. | Zbl 0868.20049

[006] [7] V.H. Fernandes, The Monoid of All Injective Order-preserving Partial Transformations on a Finite Chain, Semigroup Forum 62 (2001), 178-204. | Zbl 1053.20056

[007] [8] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: another class of divisors, Izvestiya VUZ Matematika 3 (478) (2002), 51-59.

[008] [9] V.H. Fernandes, Presentations for Some Monoids of Partial Transformations on a Finite Chain: a survey, Semigroups, Algorithms, Automata and Languages, World Scientific (2002), 363-378. | Zbl 1030.20042

[009] [10] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra 33 (2005), 587-604. | Zbl 1072.20079

[010] [11] V.H. Fernandes G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Injective Partial Transformations on a Finite Chain, Southeast Asian Bull. Math. 28 (2004), 903-918. | Zbl 1078.20060

[011] [12] O. Ganyushkin and V. Mazorchuk, On the Structure of IOn, Semigroup Forum 66 (2003), 455-483. | Zbl 1027.20044

[012] [13] G.M.S. Gomes and J.M. Howie, On the Rank of Certain Semigroups of Order-preserving Transformations, Semigroup Forum 51 (1992), 275-282. | Zbl 0769.20029

[013] [14] J.M. Howie, Products of Idempotents in Certain Semigroups of Transformations, Proc. Edinburgh Math. Soc. 17 (2) (1971), 223-236. | Zbl 0226.20072

[014] [15] J.M. Howie and B.M. Shein, Products of Idempotent Order-Preserving Transformations, J. London Math. Soc. 7 (2) (1973), 357-366. | Zbl 0272.20062

[015] [16] L.M. Popova, Defining Relations of the Semigroup of Partial Endomorphisms of a Finite Linearly Ordered Set, Leningrad Gos. Ped. Inst. Učen. Zap. 238 (1962), 78-88.

[016] [17] X. Yang, A Classiffication of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (3) (2000), 1503-1513. | Zbl 0948.20039

[017] [18] X. Yang and Ch. Lu, Maximal Properties of Some Subsemigroups in Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (2000), 3125-3135. | Zbl 0952.20049