Hypersatisfaction of formulas in agebraic systems
Klaus Denecke ; Dara Phusanga
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 123-151 / Harvested from The Polish Digital Mathematics Library

In [2] the theory of hyperidentities and solid varieties was extended to algebraic systems and solid model classes of algebraic systems. The disadvantage of this approach is that it needs the concept of a formula system. In this paper we present a different approach which is based on the concept of a relational clone. The main result is a characterization of solid model classes of algebraic systems. The results will be applied to study the properties of the monoid of all hypersubstitutions of an ordered algebra.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276867
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1154,
     author = {Klaus Denecke and Dara Phusanga},
     title = {Hypersatisfaction of formulas in agebraic systems},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {123-151},
     zbl = {1214.08001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1154}
}
Klaus Denecke; Dara Phusanga. Hypersatisfaction of formulas in agebraic systems. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 123-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1154/

[000] [1] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers 2000. | Zbl 0960.08001

[001] [2] K. Denecke and D. Phusanga, Hyperformulas and Solid Algebraic Systems, Studia Logica 90 (2) (2008) 263-286. | Zbl 1162.08001

[002] [3] E. Graczyńska and D. Schweigert, Hyperidentities of a given type, Algebra Universalis 27 (1990) 305-318. | Zbl 0715.08002

[003] [4] J. Koppitz and K. Denecke, M-solid Varieties, Springer 2006.

[004] [5] A.I. Mal'cev, Algebraic Systems, Akademie-Verlag, Berlin 1973.

[005] [6] R. Pöschel and L.A. Kalužnin, Funktionen-und Relationenalgebren, VEB Deutscher Verlag der Wissenschaften, Berlin 1979.

[006] [7] J.A. Goguen and R.M. Burstall, Introducing Institution, in Proceeding of the Logic of Programming Workshop (1984) 221-256.

[007] [8] J.A. Goguen and R.M. Burstall, Institutions: Abstract Model Theory for Specification and Programming, Journal of the ACM 39 (1) (1992) 95-146. | Zbl 0799.68134