Function classes and relational constraints stable under compositions with clones
Miguel Couceiro ; Stephan Foldes
Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009), p. 109-121 / Harvested from The Polish Digital Mathematics Library

The general Galois theory for functions and relational constraints over arbitrary sets described in the authors' previous paper is refined by imposing algebraic conditions on relations.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:276920
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1153,
     author = {Miguel Couceiro and Stephan Foldes},
     title = {Function classes and relational constraints stable under compositions with clones},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {29},
     year = {2009},
     pages = {109-121},
     zbl = {1203.06005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1153}
}
Miguel Couceiro; Stephan Foldes. Function classes and relational constraints stable under compositions with clones. Discussiones Mathematicae - General Algebra and Applications, Tome 29 (2009) pp. 109-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1153/

[000] [1] M. Couceiro and S. Foldes, Definability of Boolean function classes by linear equations over GF(2), Discrete Applied Mathematics 142 (2004), 29-34. | Zbl 1051.06009

[001] [2] M. Couceiro and S. Foldes, On affine constraints satisfied by Boolean functions, Rutcor Research Report 3-2003, Rutgers University, http://rutcor.rutgers.edu/~rrr/.

[002] [3] M. Couceiro and S. Foldes, On closed sets of relational constraints and classes of functions closed under variable substitutions, Algebra Universalis 54 (2005), 149-165. | Zbl 1095.08002

[003] [4] M. Couceiro and S. Foldes, Functional equations, constraints, definability of function classes, and functions of Boolean variables, Acta Cybernetica 18 (2007), 61-75. | Zbl 1120.06011

[004] [5] O. Ekin, S. Foldes, P.L. Hammer and L. Hellerstein, Equational characterizations of Boolean function classes, Discrete Mathematics 211 (2000), 27-51. | Zbl 0947.06008

[005] [6] S. Foldes and P.L. Hammer, Algebraic and topological closure conditions for classes of pseudo-Boolean functions, Discrete Applied Mathematics 157 (2009), 2818-2827. | Zbl 1216.06011

[006] [7] D. Geiger, Closed systems of functions and predicates, Pacific Journal of Mathematics 27 (1968), 95-100. | Zbl 0186.02502

[007] [8] L. Lovász, Submodular functions and convexity pp. 235-257 in: Mathematical Programming-The State of the Art, A. Bachem, M. Grötschel, B. Korte (Eds.), Springer, Berlin 1983.

[008] [9] N. Pippenger, Galois theory for minors of finite functions, Discrete Mathematics 254 (2002), 405-419. | Zbl 1010.06012

[009] [10] R. Pöschel, Concrete representation of algebraic structures and a general Galois theory, Contributions to General Algebra, Proceedings Klagenfurt Conference, May 25-28 (1978) 249-272. Verlag J. Heyn, Klagenfurt, Austria 1979.

[010] [11] R. Pöschel, A general Galois theory for operations and relations and concrete characterization of related algebraic structures, Report R-01/80, Zentralinstitut für Math. und Mech., Berlin 1980. | Zbl 0435.08001

[011] [12] R. Pöschel, Galois connections for operations and relations, in Galois connections and applications, K. Denecke, M. Erné, S.L. Wismath (eds.), Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht 2004. | Zbl 1063.08003

[012] [13] L. Szabó, Concrete representation of related structures of universal algebras, Acta Sci. Math. (Szeged) 40 (1978), 175-184. | Zbl 0388.08003